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Strain-level epidemiology is a key approach to understanding

the mechanisms underlying establishment of any host-microbe

association. The squid-vibrio light organ symbiosis has proven

to be an informative and tractable experimental model in which

to discover these mechanisms because it involves only one

bacterial species, Vibrio fischeri. In this horizontally transmitted

symbiosis, the squid presents nutrients to the bacteria located

in a bilobed light-emitting organ, while the symbionts provide

bioluminescence to their host. To initiate this association,

V. fischeri cells go through several distinct stages: from free-

living in the bacterioplankton, to forming a multicellular

aggregation near pores on the light organ’s surface, to

migrating through the pores and into crypts deep in the light

organ, where the symbiont population grows and luminesces.

Because individual cells must successfully navigate these

distinct regions, phenotypic differences between strains will

have a strong impact on the composition of the population

finally colonizing the squid. Here we review recent advances in

our understanding of behavioral characteristics that

differentially drive a strain’s success, including its effectiveness

of aggregation, the rapidity with which it reaches the deep

crypts, and its deployment of type VI secretion.
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Introduction
The squid-vibrio symbiosis has been a powerful model for

identifying and deciphering the mechanisms by which

strain-level differences ultimately impact the horizontal

transmission of a symbiont. The newly hatched bobtail

squid, Euprymna scolopes, has an aposymbiotic light organ,

which becomes colonized by harvesting a few Vibrio
fischeri cells present in the ambient seawater [1]. Different

bacterial species, including V. fischeri, enter the mantle
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cavity as seawater is drawn across the gills and the ciliated

surface of the nascent light organ. Ciliary activity delivers

bacterium-sized particles to a location near the light

organ’s pores, where they form aggregates (Figure 1)

[1,2]. V. fischeri cells pass into the pores on the nascent

light organ’s surface, and migrate through different micro-

environments until a few cells reach and colonize the

crypts (Figure 1) [3]. Strains isolated from wild-caught E.
scolopes have shown distinct phenotypic traits [4,5], geno-

mic composition [6] and competition behaviors [7��,8��].
Here, we present an overview of recent discoveries

explaining the roles these differences play in determining

colonization efficiency and effectiveness that drive sym-

biont population biology in the host.

Dominant and sharing strains
Swiftness of colonization

When squid are experimentally co-inoculated with dif-

ferent symbiont strains, two behaviors were observed: (i) a

dominant strain (‘D’ strain; corresponding to the previ-

ously described ‘A-type’ strains [4]) would be found as the

only one colonizing the squid, or (ii) a sharing strain

(‘S’ strain) would share the light organ with another S

strain [6]. Animals collected in the field are typically

colonized by 6–8 strains [5]; surprisingly, in spite of this

hierarchy of colonization dominance, some wild-caught

squid harbor a mixture of both D and S strains. The co-

occurrence of these two kinds of strains may be explained

by a sequential encounter of different strains during the

initial colonization of the juvenile host [7��]. In the

laboratory, a D strain needed a shorter exposure time

than an S strain to colonize >50% of exposed hosts [7��].
In addition, a D strain required less time than an S strain

to migrate into the crypts, conferring a competitive prior-

ity effect (Figure 1). Such a priority effect has also been

reported when two strains of Borrelia burgdorferi were co-

inoculated into ticks [9], but has principally been

described when different species compete for coloniza-

tion of a host. For example, in the cnidarian-dinoflagellate

symbiosis, a prior exposure to one species of alga gives it

an advantages over the subsequent colonization by a more

thermo-resistant species, even under elevated-tempera-

ture selection [10]. Similarly, among Bacteroides spp., a

‘commensal colonization factor’ is involved in priority

effects of the bacteria during colonization of the mouse

gut [11,12]. The presence and importance of competitive

priority effects is understudied in many other models of

simple or complex community symbioses, such as in the

bee gut [13] and among and between the communities

making up the human microbiome [14,15]. Thus, if the
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Vibrio fischeri cells (green ovals) are found at different stages: free in

the environmental bacterioplankton, colonizing the squid, and

persisting in the crypts of the light organ (pink, brown and light blue).

The dashed arrows indicate the trajectory of the bacterial strains

during colonization of the juvenile squid. Different activities (dark blue)

influence the bacteria, depending on which stage they are in. In this

figure, only the left side of the light organ is shown.
squid encounters an S strain sufficiently sooner than a D

strain, it may become colonized by both [7��]. The

mechanism(s) underlying this timing advantage remains

unknown, especially because it is not simply a case of

swimming speed (D strains swim more slower in a soft-

agar medium [5]), and the bacterial migration pathway

passes through several tissue microenvironments [3] that

are not yet possible to reproduce experimentally.

Population dynamics between the planktonic and

symbiotic environments

The first parameter that influences the composition of the

light organ population is the strain diversity in the envi-

ronment [16]. Both D and S strains are typically found in

adult squid [5] and, thus, will be in the ambient bacter-

ioplankton to which the hatchling squid are exposed.

However, if the D strains have such an advantage over

the S strains during colonization [6], and the light organ is

essentially the bacterium’s only growth environment [16],

one would predict that D strains will eventually sweep

the bacterioplankton population. One mitigating factor

would be if D strains are less fit in the environment, and

decrease in relative abundance over time; this hypothesis

was experimentally supported when cells of D (but not S)

strains become non-culturable after 48 h in natural ocean

water [4]. Thus, an ecological trade-off may occur in

which S strains survive better in the bacterioplankton,

but D strains are more effective colonizers. As a result,

even in an environment containing more S than D strains,

a sequential encounter with the juvenile squid would

create conditions for stochastic colonization by both types

of strains [7��]. Finally, it is ecologically significant that
Current Opinion in Microbiology 2019, 50:15–19 
only a miniscule portion of the millions of symbionts that

an adult releases each dawn into the bacterioplankton

will have an opportunity to colonize a juvenile squid,

emphasizing the importance of the symbiont’s population

biology both in the host and in seawater [16,17].

Aggregation behavior during colonization
Bacterial specificity

On either side of the nascent light organ of a newly

hatched E. scolopes, there are two surface appendages

that are covered by ciliated fields [3]; the activity of these

fields moves seawater in the mantle cavity, winnowing

bacteria-sized particles into an accumulation zone near

the light organ’s pores [1]. At bacterial concentrations

typical of seawater, V. fischeri and certain other Gram-

negative species attach to the short cilia found in this zone

[18] forming aggregates of a few cells (Figure 1). If these

cells are V. fischeri, they specifically induce host responses

and chemotax toward the light organ’s pores [19]. In

contrast, all tested Gram-positive bacteria did not form

such aggregates [2,20��]. If V. fischeri cells are added at a

concentration above that found in seawater, the bacteria

begin to attach to each other, forming aggregates of

hundreds to thousands of cells [2]. Some Gram-negative

species (e.g. Vibrio campbellii strain KNH1) form larger

aggregates than symbiotic V. fischeri strains [20��]; how-

ever, when co-occurring with other species, V. fischeri cells

interfere in an unknown way with aggregation by the

other species [2]. Thus, while there is no direct correla-

tion between the size of an aggregate and the colonization

capability or efficiency of a bacterium, this step, together

with flagellar motility and chemotaxis, is a necessary step

in the selection of the correct bacterial species [21–23].

Although the symbionts appear to be passive participants

in their accumulation at the pores [1], they must subse-

quently detach from the aggregates and proceed to and

through the pores to reach the crypts [18,24��].

Aggregation behavior has been observed for a number of

different strains of symbiotic V. fischeri, revealing a range

of sizes and speeds of aggregation [20��]. While there is

no direct correlation between the number of cells in an

aggregate and the ability to compete for colonization,

strains producing an aggregate above a certain size seem

to have an advantage. In fact, while the more rapid

detachment and subsequent migration of cells from the

aggregates into the crypts [7��] appears to explain at least

some of the dominant behavior, the expression of other as

yet unknown adaptability traits specific to D strains may

also play a role.

Regulation of aggregate formation

In V. fischeri aggregation is dependent on the expression of

the symbiosis polysaccharide (syp) locus, which encodes

capsule-synthesis genes, and is under a complex regula-

tion that includes a number of factors that function

upstream of the proximal regulatory protein, SypG
www.sciencedirect.com
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Table 1

Regulation of the V. fischeri syp locus

Regulatory factor Typea Effector/activator(s) Effect on syp

transcription

Other effectsb Homologs

present in:

Reference

SypG VFA1026 RR SypF; BinK + ndc other Vibrio spp [25]

SypE VFA1024 RR SypF � post-transcr. V. fischeri [21]

SypA VFA1020 STAS SypE � post-transcr. other Vibrio spp [25]

SypF VFA1025 HSK RscS; HahK + nd other Vibrio spp [25]

RscS VFA0237 HSK nd + nd certain V. fischeri [30��]
HahK VFA0072 SK HnoX + nd other Proteobacteria [36]

BinK VFA0360 SK nd � nd other Vibrio spp [31]

HnoX VFA0071 S nitric oxide � HahK (-) other Proteobacteria [24��]
– – Ca2+ + Bcs (+) – [36]

a HSK (hybrid sensor kinase); RR (response regulator); S (sensor); SK (sensor kinase); STAS (anti-sigma factor antagonist and sulfate transporter

domain).
b Downstream targets other than the syp locus; Bcs = bacterial cellulose synthesis.
c nd (none determined).
(Table 1) [26,27]. Studies of this regulatory pathway have

been confined to the V. fischeri symbiont strain ES114 and

its mutant derivatives [21]. The first regulator of symbiont

aggregation (and biofilm formation in culture) to be

identified was RscS [28,29]. In various V. fischeri strains,

rscS, is either present, absent or frameshifted [30��].
Specifically, RscS is not required for host colonization

by several symbiont strains, since they colonize the squid

even though they don’t encode RscS, or their rscS gene

contains an inactivating frame-shift; nevertheless, they

remain dependent on the downstream syp locus. For

instance, the D strain MB13B2 forms large aggregates

even with a frame-shifted rscS, but loses that phenotype if

the structural gene sypQ is mutated [20��]. This finding

indicated that RscS isn’t the only factor controlling Syp-

dependent biofilm formation [21]. In fact, a second key

regulator is HahK, which, like RscS, activates the SypF

sensor kinase upstream of SypG. In addition to these

positive regulators, the negative regulator BinK, which

reduces SypG function and antagonizes RscS action [31],

appears to be present and functional in all V. fischeri strains

examined [30��]. Even at this stage in our understanding

of this tightly controlled pathway, the complexity of the

system indicates V. fischeri aggregate/biofilm production is

sensitive to both recognized, and as yet unknown, signals

from the abiotic and biotic environment. Niche coloniza-

tion by many symbionts involves-specific aggregation

behavior as described, for example, in the reproducible

spatial distribution of distinct gut microbes in the zebra-

fish [32]. Aggregation-driven colonization resistance by

the normal microbiota has also been reported to protect

against vaginal infection by inhibiting Trichomonas vagi-
nalis adhesion to host cell [33]. Interestingly, Fusobacter-
ium nucleatum protects itself from clearance by adhering to

a specific previously attached species as part of its inte-

gration into the oral microbial community [34].

In addition to these internal regulatory proteins, external

nutrient and salt conditions play a modulating role in
www.sciencedirect.com 
biofilm formation [35]. In particular, two-specific extra-

cellular factors have been shown to control the extent of

biofilm formation: calcium is an activator of syp gene

expression [36], while nitrite oxide (NO) is an inhibitor

[24��]. Interestingly, the presence of BinK is sufficient to

prevent calcium’s ability to induce biofilm in wild-type

cells [36]. In addition, calcium increased the expression of

a newly discovered bacterial cellulose-based biofilm

through the bcs locus, which was also dependent on the

regulator SypF. Nitric oxide synthase is secreted by the

host and is present in the mucus, where it produces NO

and affects bacterial production of NO-detoxifying activ-

ity in the aggregates [37,38]. In addition, host-derived NO

serves as a signal to inhibit the formation of Syp polysac-

charide, allowing the bacteria to dissociate and migrate

from the aggregate and into the crypts of the light organ

[24��,27]. The degree to which symbiotic V. fischeri cells

aggregate and/or dissociate varies from strain to strain, a

difference that is likely to contribute significantly to their

relative success at squid colonization.

Type VI secretion system (T6SS) activity
The T6SS is a cell-contact mechanism that can be

deployed by one bacterium to kill another [39]; such

antagonistic behavior provides a fitness advantage during

strain–strain competition for nutrients or ecological

niches, especially during symbiosis [40]. T6SS also has

a role both in shaping the normal host microbiota and in

pathogenesis in complex communities [41]: for example,

Vibrio cholerae uses a T6SS to attack the pre-existing gut

microbiota to facilitate its colonization [42]. The impact

of T6SSs in shaping bacterial communities raises the

question of its involvement in the colonization of the

squid by its symbiont. Two T6SSs have been identified in

V. fischeri [8��]. Homologs of one system, T6SS1, are

present in all strains studied but their specific function

has not been described yet [8��]. The other one, referred

to as T6SS2, is required for killing of conspecific strains

when tested in a culture-based co-incubation assay [8��].
Current Opinion in Microbiology 2019, 50:15–19
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Homologs of genes encoding this system have been

demonstrated in half of the 32 V. fischeri strains examined

and, intriguingly, only some of the strains isolated from a

given light organ would harbor it [8��]. Significantly, the

carriage of this T6SS2 and the dominance phenotype are

not correlated; in fact, this system is encoded by certain

sharing or dominant strains, as well as some strains of

V. fischeri that are incapable of colonizing the light organ.

At present, six groups of compatible strains have been

identified, where incompatible strains must be spatially

separated from each other or else one will eliminate the

other [8��]. These antagonistic interactions can effect

colonization of the squid: in the rare event where two

incompatible V. fischeri strains reached the same light

organ crypt (Figure 1), the T6SS was involved in killing

the strain that didn’t encode it [8��]. A question of future

interest is whether the T6SS2 is involved in strain selec-

tion as early as the aggregation step of the squid coloni-

zation. Except for when they are attached to particles

[43], planktonic V. fischeri cells will rarely encounter each

other in the environment; however, because the host

concentrates them there [1,2], an aggregate provides a

time and location at which they would likely come into

contact.

Conclusion
Strain variation is a key factor in understanding the

epidemiology of host colonization. Here, we described

three behaviors — dominance, aggregation, and antago-

nism — that are employed to different degrees by strains

of V. fischeri that are successful light organ symbionts.

Other behaviors, such as bioluminescence and chemo-

taxis, while not described here, also play critical roles in

the squid-vibrio association. Each of these mechanisms

can be shown to contribute to a strain’s fitness in labora-

tory assays, but because the symbionts are horizontally

transmitted, and encounter different sets of conditions

and selective pressures in both their symbiotic and their

planktonic niches, evolutionary success is not dependent

on only one mechanism. In addition, while this review

focuses on strain-dependent behaviors during the initia-

tion of symbiosis, there are distinct and equally stringent

behaviors required for bacterial persistence in the associ-

ation [44,45]. Understanding the dynamics of these inter-

acting mechanisms, and the trade-offs different strains

make, is fundamental to understanding the population

biology of symbiosis.
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