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nels, generating a “bowtie” image. These 

very different patterns of deep critical zone 

structure are not easily explained with cli-

mate. The authors used a numerical model 

of the state of stress in an elastic rock mass 

into which a landscape has been carved (9) 

to calculate the pattern of expected crack-

ing of the rock. The topographic stresses 

arise from both the topography itself, and 

the far-field horizontal stresses imposed 

by the tectonic setting (arrows in figure) 

constrained by an existing world map of 

stresses. As the far-field stresses are in-

creased, the pattern of expected cracking 

morphs from the surface-parallel to bowtie 

patterns, capturing both end-members of 

the observed seismic images. This is indeed 

an encouraging result.

Are we to believe their results? In many 

mountain ranges, the rock arriving in the 

near-surface zone is already riddled with 

flaws that have accumulated as it moved 

through the tectonic stress fields of pres-

ent and past orogenies (10). To what degree 

does the presence of such preexisting flaws 

violate the assumption that the rock be-

haves as a uniform elastic medium?  How 

well does the present state of stress reflect 

the long-term history of stress to which 

a rock has been subjected? One can also 

imagine situations in which other pro-

cesses that generate near-surface cracks 

[for example, frost-cracking (11)], or that 

chemically weather the rock as it nears the 

surface (12), are instead the rate-limiting 

steps in damaging the rock.

Whatever the answers, the results re-

ported by St. Clair et al. will challenge the 

broader community to entertain a role for 

the state of stress imposed by the topogra-

phy itself and its tectonic setting. They have 

also demonstrated the utility of classical 

geophysical methods and of a network of 

sites to test their ideas.        ■
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MICROBIOME

A unified initiative to 
harness Earth’s microbiomes
Transition from description to causality and engineering

D
espite their centrality to life on Earth, 

we know little about how microbes (1) 

interact with each other, their hosts, or 

their environment. Although DNA se-

quencing technologies have enabled a 

new view of the ubiquity and diversity 

of microorganisms, this has mainly yielded 

snapshots that shed limited light on micro-

bial functions or community dynamics. Given 

that nearly every habitat and organism hosts 

a diverse constellation of micro-

organisms—its “microbiome”—

such knowledge could transform 

our understanding of the world and launch 

innovations in agriculture, energy, health, 

the environment, and more (see the photo). 

We propose an interdisciplinary Unified Mi-

crobiome Initiative (UMI) to discover and 

advance tools to understand and harness the 

capabilities of Earth’s microbial ecosystems. 

The impacts of oceans and soil microbes on 

atmospheric CO
2
 are critical for understand-

ing climate change (2). By manipulating in-

teractions at the root-soil-microbe interface, 

we may reduce agricultural pesticide, fertil-

izer, and water use enrich marginal land and 

rehabilitate degraded soils. Microbes can 

degrade plant cell walls (for biofuels), and 

synthesize myriad small molecules for new 

bioproducts, including antibiotics (3). Restor-

ing normal human microbial ecosystems can 

save lives [e.g., fecal microbiome transplanta-

tion for Clostridium difficile infections (4)]. 

Rational management of microbial commu-

nities in and around us has implications for 

asthma, diabetes, obesity, infectious diseases, 

psychiatric illnesses, and other afflictions (5, 

6). The human microbiome is a target and a 

source for new drugs (7) and an essential tool 

for precision medicine (8).

The National Science Foundation’s Micro-

bial Observatories, the U.S. Department of 

Energy’s Genomic Sciences program, the Na-

tional Institutes of Health’s Human Microbi-

ome Project, and other efforts in the United 

States and abroad have served as critical first 

steps in revealing the diversity of microbes 

and their communities. However, we lack 

many tools required to advance beyond de-

scriptive approaches to studies that enable a 

mechanistic, predictive, and actionable un-

derstanding of global microbiome processes. 

Developing these tools requires new collabo-

rations between physical, life, and biomedical 

sciences; engineering; and other disciplines.

AREAS OF EMPHASIS. A central purpose of 

the UMI is to develop cross-cutting platform 

technologies to accelerate basic discovery 

and translation to applications. We highlight 

key needs and opportunities.

Decrypting microbial genes and chemis-

tries. Approaches for characterizing microbi-

omes increasingly rely on whole-community 

metagenomic sequencing, yet roughly half of 

the genes identified in these studies encode 

products of unknown function, and existing 

functional annotations are often incomplete 

or inaccurate (9). Technologies for resolv-

ing roles of uncharacterized genes with high 

throughput and high accuracy are needed. 

These approaches must integrate improved 

computational methods for in silico predic-

tion of protein and RNA functions, rapid 

mutagenesis of model organisms or native 

strains under natural conditions, multi-

omics and high-resolution phenotyping plat-

forms to test functional predictions in vitro 

and in situ, and improved capture of infor-

mation in the literature. 

Deciphering chemistries of microbiomes is 

essential. In untargeted metabolomics stud-

ies using mass spectrometry, less than 2% 

of data can be matched to known chemical 

compounds, and only a fraction of those map 

to recognized biochemical pathways (10). Ad-

vances have been made in predicting struc-

tures from mass spectra, but improvements 

are needed in both in silico and physical 
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technologies to illuminate the “dark matter” 

of microbial chemistries.

Cellular genomics and genome dynamics. 

Simply knowing which genes are present in 

a microbial population, without understand-

ing their physical linkage, precludes organ-

ism-based insights into community function 

and dynamics. A transition from gene-centric 

to whole-genome–based analyses is vital and 

will require technologies capable of generat-

ing complete and assembled genomes from 

individual cells in complex microbiomes 

with high throughput, low cost, and minimal 

quantities of DNA. Advances are needed in 

long-read and single-cell sequencing plat-

forms, improved algorithms for genome as-

sembly, and comprehensive collections of 

reference genomes.

High-throughput, high-sensitivity multi-

omics and visualization. Studies that in-

tegrate metagenomics, transcriptomics, 

proteomics, and metabolomics have been 

reported, but they are limited by coarse tem-

poral and spatial scales and the absence of 

contextual information. Future discoveries 

will require new multimodal imaging capa-

bilities that allow individual microbes—and 

their interactions, products, and identities—

to be visualized within complex communities 

(11). Techniques that integrate high-resolu-

tion optical imaging with submicron-scale 

spectroscopy, and nondestructive nanoscale 

sensing platforms that allow longitudinal 

measurements, will help us understand how 

chemical conversations shape microbial 

communities and their environments.

Modeling and informatics. Comprehensive 

understanding of a microbial community can 

only be achieved by integrating imaging and 

multi-omics data sets with measurements 

of environmental or host parameters over 

relevant temporal and spatial scales. Adap-

tive models that capture the complexity of 

interactions from molecules to microbes, 

and communities to ecosystems, and new 

approaches for visualizing complex data sets 

in multiple dimensions, will contribute to a 

systems biology of microbiomes capable of 

yielding models with high predictive value. 

This will require new computational tools 

and innovations in mathematics, statistics, 

machine learning, and related fields. To en-

sure that data are openly available in a com-

mon format that can be processed by diverse 

computational tools, data commons, and 

standard languages for data reporting, such 

as those developed by the Genomic Stan-

dards Consortium (12), will be essential.

Perturbing communities in situ and trac-

table model systems. Transitioning microbi-

ome research from a correlative science to 

one based on experimental assessments of 

causality requires tools for manipulating mi-

crobial communities. Precision approaches 

are needed for stimulating, inhibiting, add-

ing, removing, or altering microbes and 

their genes in situ, alone, or in combination 

and without cultivation. Potential tools in-

clude sequence-specific gene editing using 

CRISPR/Cas9 delivered by phage or conju-

gative elements (13), contractile nanotubes 

with strain-specific bactericidal activity 

(14), defined nutrient combinations based 

on modeled metabolic networks, and syn-

thetic microbial consortia engineered to 

disrupt or replace existing communities. 

Tractable model systems that approximate 

natural environments, including culture-

based methods, and studies of naturally oc-

curring microbiomes of low complexity such 

as those found in several insects, squid, and 

other organisms, will enable discoveries of 

mechanisms that drive interactions between 

microbes and their habitats (15). 

IMPLEMENTATION. These goals are ambi-

tious, but not beyond reach. Many tools we 

call for are extensions of existing technolo-

gies, albeit ones that will require ingenuity 

and resources to implement. Over the near 

term of 5 years, these tools could reorient 

the field from correlative studies to hypoth-

esis-driven approaches capable of estab-

lishing precise causal relationships. Over a 

longer term of 10 years, we envision a leap 

toward predictive understanding that allows 

evidence-based, model-informed microbi-

ome management and design. 

Realizing the goals of the UMI will require 

a continuing and well-resourced public-

private effort. Involving physical scientists, 

engineers, and others in an interdisciplin-

ary initiative will lead to tool development 

and insights that have applications in differ-

ent environments and beyond microbiome 

research. This creates the potential to ac-

celerate and transform research supported 

by multiple government agencies, private 

foundations, and industries, with anticipated 

economies of scale. Alignment of efforts of 

the many funders of microbiome-related re-

search could leverage existing resources for 

greater yield, forge new funding approaches, 

amplify benefits of increased investment, 

and attract entities not yet involved in micro-

biome-related research.

Funding mechanisms will need to reflect 

the cross-cutting nature of the initiative. In 

addition to traditional agency-specific re-

quests for proposals, multi-agency joint calls 

for development of broadly applicable tools 

could ensure coordination and availability 

of sufficient resources while reducing re-

dundancy. These mechanisms should be de-

signed to attract, train, and support diverse, 

multidisciplinary networks of scientists and 

engineers and to encourage disruptive ideas. 

Efforts should be made to identify microbi-

ome-related translational opportunities and 

reduce barriers to industry participation. 

The research community must help steer 

this effort by participating in the exchange 

between disciplines and by communicat-

ing insights and implications. The scientific 

community must also integrate ethicists, 

social scientists, regulators, and legal profes-

sionals at an early stage to ensure that risks 

associated with microbiome research are ac-

curately assessed and proactively addressed.  

As U.S. scientists, we call for a national 

initiative, but the challenge warrants a con-

certed global response to promote good prac-

tice and speed progress. Such an alliance 

could develop large-scale international col-

laborations and coordinate shared assets and 

consensus standards for global microbiome 

research. Fueled by the energy and vision of 

the scientific community and cross-cutting 

public and private partnerships, the UMI 

will lead to scientific insights, technological 

advances, and economic opportunities of 

lasting benefit to future generations.        ■
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Microbial community. Shewanella oneidensis with 

electron-conducting protein nanowires form an electric 

circuit to respire by transferring electrons to metal oxide.
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