The first engagement of partners in the *Euprymna scolopes*–*Vibrio fischeri* symbiosis is a two-step process initiated by a few environmental symbiont cells

Melissa A. Altura,1† Elizabeth A. C. Heath-Heckman,1 Amani Gillette,1 Natacha Kremer,1 Anne-Marie Krachler,2 Caitlin Brennan,1 Edward G. Ruby,1 Kim Orth2 and Margaret J. McFall-Ngai1*

1 Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.

2 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Summary

We studied the *Euprymna scolopes*–*Vibrio fischeri* symbiosis to characterize, in vivo and in real time, the transition between the bacterial partner’s free-living and symbiotic life styles. Previous studies using high inocula demonstrated that environmental *V. fischeri* cells aggregate during a 3 h period in host-shed mucus along the light organ’s superficial ciliated epithelia. Under lower inoculum conditions, similar to the levels of symbiont cells in the environment, this interaction induces haemocyte trafficking into these tissues. Here, in experiments simulating natural conditions, microscopy revealed that at 3 h following first exposure, only ~5 *V. fischeri* cells aggregated on the organ surface. These cells associated with host cilia and induced haemocyte trafficking. Symbiont viability was essential and mutants defective in symbiosis initiation and/or production of certain surface features, including the Mam7 protein, which is implicated in host cell attachment of *V. cholerae*, associated normally with host cilia. Studies with exopolysaccharide mutants, which are defective in aggregation, suggest a two-step process of *V. fischeri* cell engagement: association with host cilia followed by aggregation, i.e. host cell–symbiont interaction with subsequent symbiont–symbiont cell interaction. Taken together, these data provide a new model of early partner engagement, a complex model of host–symbiont interaction with exquisite sensitivity.

Introduction

Many bacterial species occupy more than one niche. In symbiotic associations that are horizontally transmitted, i.e. acquired anew each host generation, the bacterial partner often has an extended free-living stage between periods as a symbiont. The transition of microbes from free-living to host-associated has been studied in a number of systems and is of interest to both environmental and medical microbiologists (Taylor *et al.*, 2005; Nelson *et al.*, 2009; Bright and Buighersi, 2010; Freeman *et al.*, 2010). Commonly, transitions occur as the bacterial partner first associates with the apical surfaces of epithelial cells of the host’s mucociliary membranes. At these sites, motile cilia occur in dense fields where they work in concert with mucus to create ‘mucociliary’ currents that coordinate fluid flow across the tissue surface (Lee, 2011). Although these features are restricted to internal locations in terrestrial animals, they first evolved in marine organisms. They are widely distributed among aquatic animal taxa, where ciliated epithelia serve a variety of functions (Emlet, 1991; Riisgard and Larsen, 2001). Because cilia interface with the microbe-rich water column, they mediate not only colonization by symbionts, but also serve as reservoir sites for human pathogens such as *Vibrio parahaemolyticus* (Wang *et al.*, 2010a).

Recent evidence suggests that the cilia of animal mucus membranes not only function biomechanically to control the flow field, but can also sense and respond to foreign substances in the environment (Shah *et al.*, 2009). Thus, the initial harvesting of the partner along mucociliary membranes may also be the period of the first molecular interactions underlying partner recognition. Whereas the interface of beneficial or benign bacteria with host cilia is more common than the interaction with pathogenic microbes, the cilia–microbe relationship has been
studied in depth principally in cell or tissue culture models of interactions with bacterial pathogens, such as *Pseudomonas aeruginosa* (Bajolet-Laudinat et al., 1994; Adam et al., 1997; Mewe et al., 2005), *Listeria monocytogenes* (Fadaee-Shohada et al., 2010), *Moraxella catarrhalis* (Balder et al., 2009) and *Bordetella* spp. (Soane et al., 2000; Groathouse et al., 2003; Anderton et al., 2004; Edwards et al., 2005). In such systems, a pathogen often binds to ciliary membranes and perturbs the coordinated behaviour of the ciliated field, although the mechanisms underlying these activities are not always well understood.

The symbiosis between the Hawaiian bobtail squid *Euprymna scolopes* and its Gram-negative luminous partner *Vibrio fischeri* offers an opportunity to study the interaction of bacteria with cilia in an intact, natural model. The first contact between the partners occurs along mucociliary membranes on the surface of the light organ (Fig. 1A). The light organ cilia, which develop during embryogenesis, are unique to newly hatched animals, and function to potentiate colonization of the organ (Montgomery and McFall-Ngai, 1993; 1994). *V. fischeri* cells aggregate outside the light organ prior to entry (Nyholm et al., 2000; Nyholm and McFall-Ngai, 2003). In these earlier studies, high numbers of *V. fischeri* cells (∼10⁶ ml⁻¹ of seawater) were used to visualize the phenomenon. The data showed that bacterial aggregates which form during the first 2–3 h are associated with mucus, which is secreted by the light organ epithelial cells in response to environmental peptidoglycan (Nyholm et al., 2000). Then, at 4–5 h following hatching, the aggregated *V. fischeri* cells dissociate from their position on the surface, migrate to and enter three pores, and travel down ducts to the interior microvillus crypt spaces, where they proliferate and reside for the lifetime of the host (reviewed in McFall-Ngai (2008)). Other Gram-negative bacteria are able to aggregate outside the light organ in the absence of *V. fischeri*; however, when *V. fischeri* is present, the symbiont is always the dominant bacterial species present at the end of the aggregation process (Nyholm and McFall-Ngai, 2003).

A subsequent, independent study of the early hours of the symbiosis under more natural conditions, with exposure to environmentally relevant numbers of *V. fischeri* (∼5000 cells ml⁻¹ of seawater), revealed that the animal is able to sense and respond to the symbiont during the period of its aggregation on the light organ’s surface (Koropatnick et al., 2004; 2007). Specifically, as early as 2 h post-exposure to symbiont cells, a significant increase was observed in haemocyte trafficking into the blood sinus space underlying the ciliated epithelium, a behaviour induced by the peptidoglycan monomer tracheal cytotoxin (TCT) exported by symbiont cells. However, this work did not address how many bacteria are actually associating with host tissues at the inoculum size that induces haemocyte trafficking.

The present study was undertaken to characterize (i) the behaviour of *V. fischeri* cells, as well as their numbers, during the early hours of host-tissue engagement, (ii) the features of the cells that mediate these interactions and (iii) host responses to the bacterial partner. The data provide evidence that the squid interacts with and responds to the presence of very few bacteria, suggesting a highly sensitive recognition system, and that these bacteria are in direct contact with the host cilia as well as each other. The data further suggest that the response of the cilia in this beneficial symbiosis is similar to the responses of host animal cells to bacterial pathogens, providing yet another instance of convergence in the cellular language of these two different forms of symbiosis.

Results

A small number of host-associated *V. fischeri* are sufficient to initiate symbiosis

To characterize the initial events of host–symbiont interaction, we quantified, over time and with varying levels of...
inocula, fluorescently labelled environmental *V. fischeri* cells associating with the ciliated surface of the juvenile host’s light organ. These experiments were performed in the background of natural seawater (~10^6 naturally occurring, non-specific marine bacteria per millilitre). To study the timing of association, we exposed the animals to levels of *V. fischeri* that the host typically encounters in the environment (~5 \times 10^3 CFU ml\(^{-1}\); Jones *et al.*, 2007), such doses typically result in 100% colonization and initiation of TCT-induced haemocyte trafficking (Koropatnick *et al.*, 2004). *V. fischeri* associated with the ciliated epithelium at low numbers beginning at 1 h post-exposure (Fig. 1); on average, one fluorescent bacterium per ciliated field was detected. The number of associated *V. fischeri* cells per field increased slightly, but significantly, over the first 3 h to ~4 fluorescent cells/ciliated field (Fig. 2A). Shortly after this time, migration into the pores began. With increasing inoculum size, we observed an increase in the number of bacteria associated with the ciliated field at 3 h post-exposure (Fig. 2B). When twice the bacterial dose was added (i.e. from 5000 to 10 000 CFU ml\(^{-1}\) of seawater), about twice as many *V. fischeri* cells associated with host tissues, although the result was not statistically significant. With a 20-fold increase in dose, however, we observed a significant 200-fold increase in the number of associating bacteria, which suggests cooperativity above a certain inoculum size.

We also examined the effects of increased inoculum size on haemocyte trafficking to the blood sinus space underlying the ciliated epithelium of the light organ. The asterisk indicates data points that were significantly different from the aposymbiotic (Poisson P-value analysis; APO, n = 9; 5 \times 10^3, n = 8; 1 \times 10^4, n = 11; 1 \times 10^5, n = 11). Bars, standard error.

© 2013 Society for Applied Microbiology and John Wiley & Sons Ltd, *Environmental Microbiology*, 15, 2937–2950
V. fischeri cells intimately associate with cilia of the light organ’s superficial epithelium

Because only a few associating symbiont cells are capable of inducing a robust host cell phenotype, e.g. TCT-triggered haemocyte trafficking, we reasoned that the V. fischeri cells were not merely suspended above host tissues in host-secreted mucus as previously suggested by our work and the work of others (Nyholm et al., 2000; Yip et al., 2006), but are likely associated more closely with host cells. Examination of large aggregates of V. fischeri (i.e. those resulting from an exposure of the animal to 10^6 CFU ml$^{-1}$) by scanning electron microscopy (SEM) revealed multiple points of contact between V. fischeri and host cilia, as well as contact among the symbiont bacteria themselves (Fig. 3A).

Because the typical aggregates of a few symbiont cells were difficult to visualize by SEM and the fixation/dehydration steps for SEM may introduce artefacts, we also used confocal microscopy with live specimens to visualize the cilia–bacteria interactions. By staining the light organ of live animals with a fluorochrome that labels fluorescent bacteria in close association with the cilia, we localized the abundant tubulin present in the cilia, and host cilia, as well as contact among the symbiont bacteria themselves (Fig. 3A).

Because the typical aggregates of a few symbiont cells were difficult to visualize by SEM and the fixation/dehydration steps for SEM may introduce artefacts, we also used confocal microscopy with live specimens to visualize the cilia–bacteria interactions. By staining the light organ of live animals with a fluorochrome that labels fluorescent bacteria in close association with the cilia, we localized the abundant tubulin present in the cilia, and host cilia, as well as contact among the symbiont bacteria themselves (Fig. 3A).

Bacterial features affect normal interaction with cilia

We then sought to explore a general mechanism underlying V. fischeri attachment to host cells. In these experiments, to examine whether non-viable V. fischeri associate with host cilia, the bacteria were either heat- or azide-killed to disrupt cellular function. Both treatments led to bacteria that associated with the ciliated surface of the organ at statistically significantly lower levels (Fig. 4).

When compared with treatment with azide, however, only one tenth as many heat-treated cells were able to interact ($P = 0.056$). These data suggest that while viability enables this host–bacterial association, a heat-labile cell-surface component likely also plays a role.

Early engagement of V. fischeri cells is a two-step process: attachment to host cilia followed by bacterial-bacterial cell adhesion

We used V. fischeri mutants defective in exopolysaccharide (EPS) production, which have phenotypes associated with early engagements with the host (Yip et al., 2006), as a tool by which to study initial partner–cell interactions. To assess the effect of symbiont EPS production on bacterial association with the ciliated field, we exposed squid to either V. fischeri mutants unable to produce EPS ($sypG^−$ and $rscS^−$), or a mutant that overexpresses EPS ($rscS^{−−}$) (Table 1). We analysed the data by normalizing the counts to wild-type controls. The $sypG^−$ and $rscS^−$ mutants had consistently, but not always significantly, fewer bacterial cells associated with host cilia than wild type at all time points and inoculum levels assayed. This lower level of cell association was only statistically significant at high inocula of $sypG^−$ and $rscS^{−−}$ (10^5 CFU ml$^{-1}$) at 3 h post-exposure and with short exposures (1 h) of 10^3 CFU ml$^{-1}$ for $sypG^−$ (Fig. 5A).

Although the bacteria associated with host cells at numbers close to those of wild type, a greater distance between individual $sypG^−$ mutant cells was detected, indicating the disruption of the aggregation phenotype (Fig. 5B), as had been previously described (Yip et al., 2006). In contrast, symbiont cells that overexpressed EPS ($rscS^{−−}$) had significantly higher numbers of V. fischeri cells associating with the light organ surface compared with wild type at all time points and inocula (Fig. 5A), and were as closely associated with one another (Fig. 5C). The results of these experiments suggest that the V. fischeri EPS is not required for normal association with host cilia but is required for aggregation. As such, they provide evidence of a two-step process: attachment of V. fischeri to host cilia, followed by aggregation mediated by the EPS on the surface of these symbionts.

To determine which of these two steps, i.e. adherence to the cilia or EPS-mediated aggregation, induces the characteristic haemocyte trafficking into associated host tissues, we quantified haemocytes in the blood sinus underlying the superficial epithelium. Neither the underexpression of EPS ($sypG^−$) nor the overexpression of EPS ($rscS^{−−}$) significantly affected the number of haemocytes that trafficked to the blood sinus space of the light organ anterior appendage (Fig. 5D).

We also examined four other mutants defective in outer envelope features (Table 1). The strains used included three mutants defective in early colonization: (i) a pilus mutant ($ΔpiIA2$) (Stabb and Ruby, 2003), (ii) an outer membrane protein mutant ($ΔompU$) (Aeckersberg et al., 2001) and (iii) a mutant defective in O-antigen production (waaf::Tnerm) (Post et al., 2012). We also examined a
mutant in the *V. fischeri* mam7 gene. The Mam7 protein was an attractive candidate for involvement in initial attachment, as in *V. cholerae*, the product encoded by this gene is involved in the early binding of *V. cholerae* to host microvilli (Krachler et al., 2011), and so its homologue in *V. fischeri* may mediate binding to host membranes. Further, the *V. fischeri* homologue has the same *in vitro* activity as the *V. cholerae* protein (Fig. S1). None of these

Fig. 3. Representative micrographs of *V. fischeri* associated with the ciliated epithelium of the juvenile light organ.
A. A SEM micrograph of *V. fischeri* cells (false coloured) associating with the organ surface of an animal exposed to 1×10^6 symbiont CFU ml$^{-1}$ and then fixed. Green arrows indicate examples of bacterial-ciliary contacts.
B. Upper: confocal micrograph of a live animal specimen exposed to 5×10^3 CFU ml$^{-1}$ *V. fischeri* (red) for 3 h. Box, area magnified in lower panel. Lower: RFP-expressing *V. fischeri* associating with a host cilium. [Counterstains: cilia, TubulinTracker (green); mucus, wheat germ agglutinin (blue); image is highly pixelated because of use of living tissue, which requires acquiring images at high scan speeds]
C. Upper left: confocal micrograph of a live animal specimen exposed to 1×10^5 CFU ml$^{-1}$ *V. fischeri* (red) for 3 h. Orange box, area magnified in upper right. Yellow box, area magnified in lower panel. Upper right: higher magnification of RFP-expressing *V. fischeri* associating with host cilia. Lower: area of mucus without cilia, which contains no *V. fischeri*. [Counterstains: cilia, TubulinTracker (green); mucus, wheat germ agglutinin (blue)].
mutants had either an effect on attachment or an association defect under any condition (Fig. S2).

Association with host cilia is not specific to symbiotic V. fischeri

To examine the specificity of attachment to host cilia, we assessed the ability of a V. fischeri strain that is not symbiotic in the squid host to associate with light organ cilia (Table 1). We exposed the animal to V. fischeri MJ11, the symbiont of the Japanese pinecone fish Monocentris japonica, which is typically unable to colonize the squid (Mandel et al., 2009). No significant difference was found in any of the six inoculum conditions tested (Fig. 6A). These data indicate that the defects in colonization of this strain are not likely due to defects in association of the cells with host cilia. MJ11 does not have the rscS gene (Mandel et al., 2009), which renders them unable to aggregate, but similar to rscS– ES114, they show no defect in association with the cilia.

V. parahaemolyticus KNH1, an isolate from a near-shore habitat in Hawaii where both the host squid and free-living, symbiosis-competent V. fischeri co-occur, was also analysed. KNH1 forms aggregates outside the squid light organ in the absence of V. fischeri cells, but is unable to colonize the animal (Nyholm and McFall-Ngai, 2003); as the aggregate matures, V. fischeri outcompetes V. parahaemolyticus. Under the conditions of the experiments reported here, V. parahaemolyticus KNH1 cells

![Graph showing the effect of V. fischeri viability on association with the ciliated epithelial field of the juvenile light organ.](image)

Fig. 4. The effect of V. fischeri viability on association with the ciliated epithelial field of the juvenile light organ. (Representative graph; all experiments replicated at least twice). Number of bacteria/ciliated field after 3 h exposure to 1 × 10⁵ CFU ml⁻¹ of viable, heat-killed, or azide-killed V. fischeri. The asterisk indicates data points that were significantly different from viable bacteria and +, data points that were significantly different from heat-killed bacteria, both according to a Mann–Whitney test with a Bonferroni correction for multiple comparisons (n = 5 independent sample animals for all conditions). Bars, standard error.

Table 1. Strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibrio fischeri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES114</td>
<td>Squid light organ symbiont from Euprymna scolopes</td>
<td>Boettcher and Ruby (1990)</td>
</tr>
<tr>
<td>MJ11</td>
<td>Fish light organ symbiont from Monocentris japonica, KV1323 (ΔrscS::erm) carrying pVSV208, Cam⁹</td>
<td>Mandal et al. (2008)</td>
</tr>
<tr>
<td>rscS– (KV2787)</td>
<td>KV1666 (sypG::pAlA4); carrying pVSV208, Cam⁹</td>
<td>Hussa et al. (2007)</td>
</tr>
<tr>
<td>sypG– (KV2785)</td>
<td>ES114 carrying pVSV208, Cam⁹, and pKG11, Cam⁹ and Tet⁹</td>
<td>Yip et al. (2006)</td>
</tr>
<tr>
<td>ΔompU</td>
<td>ES114, ΔompU::kanR, carrying pVSV209, Kan⁹</td>
<td>J. Graber and E. Ruby, unpublished</td>
</tr>
<tr>
<td>waaL</td>
<td>ES114, waaL::TrnSerR, carrying pVSV208, Cam⁹</td>
<td>Post et al. (2012)</td>
</tr>
<tr>
<td>Δmam7</td>
<td>ES114, Δmam7, carrying pVSV208, Cam⁹</td>
<td>This study</td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNH1</td>
<td>Environmental isolate from the coast of Oahu, HI</td>
<td>Nyholm et al. (2000)</td>
</tr>
<tr>
<td>pVSV208</td>
<td>oriV₂₀₀₄, oriT₂₀₀₄, oriV₂₀₁₃, rfp-tagged, Cam⁹, transcriptional terminators-(AvrR, Sall, Stul)-promoterless</td>
<td>Dunn et al. (2006)</td>
</tr>
<tr>
<td>pVSV209</td>
<td>oriV₂₀₀₄, oriT₂₀₀₄, oriV₂₀₁₃, KanR-constitutively expressed rfp, CamR and gfp</td>
<td>Dunn et al. (2006)</td>
</tr>
<tr>
<td>pKG11</td>
<td>pKV69 (Sall) + 3 kb Sall fragment from mutagenized pLMS33 containing rscS1 allele; Cam⁹, Tet⁹</td>
<td>Yip et al. (2006)</td>
</tr>
<tr>
<td>pKV363</td>
<td>oriV₂₀₀₄, oriTRP4, ccbB-mediated suicide vector, Cam⁹</td>
<td>Shibata and Visick (2012)</td>
</tr>
</tbody>
</table>

Cam⁹, chloramphenicol resistance; Erm⁹, erythromycin resistance; Kan⁹, kanamycin resistance; Tet⁹, tetracycline resistance; gfp, green-fluorescent-protein gene; rfp, red-fluorescent-protein gene.

a. See Supporting Information Methods.
were able to associate with the cilia at levels statistically indistinguishable from the symbiont at all time points and inocula (Fig. 6A).

V. parahaemolyticus is known to be outcompeted in the aggregate by wild-type *V. fischeri* (Nyholm and McFall-Ngai, 2003). To determine whether association with the cilia played a role in dominance, we exposed the squid to *V. parahaemolyticus* and wild-type *V. fischeri* ES114, and counterstained the cilia to observe the extent of close association of these cells with host tissues. We detected no change in localization of *V. parahaemolyticus*. In addition, we observed that this non-symbiotic species continued to localize to the cilia, even in the presence of increasing levels of wild-type *V. fischeri* (Fig. 6B).

The factors that influence symbiont dominance are not well understood in the squid–vibrio system. To determine whether the EPS-induced, bacteria–bacteria associations described earlier influence dominance by wild-type *V. fischeri* over *V. parahaemolyticus*, we competed *V. parahaemolyticus* against either the wild-type *V. fischeri* or the rscS*−* mutant. The rscS*−* mutation in *V. fischeri* did not compromise its ability to dominate *V. parahaemolyticus* in the aggregate. However, no significant difference in the relative levels of association with the host’s ciliated epithelium was detected at the inocula tested (Fig. 6C). These data provide evidence that dominance of *V. fischeri* occurs at a point downstream of both the attachment and aggregation steps.

Discussion

Using the experimental squid–vibrio model of the colonization of animal tissues by bacterial symbionts, this study examined, *in vivo* and in real time, the interactions between host cilia and bacterial partners during the initial hours of bacterial transition from free-living to host-associated. Using the typical environmental conditions in which *V. fischeri* represents only ~0.5% of the ambient bacteria, we found that: (i) during the initial 2–3 h, only 3–5 candidate-symbiont cells are recruited into an aggregate that migrates into host tissues; (ii) these cells are in close contact with host cilia; (iii) their viability aids in association with host tissues; (iv) this recruitment phase progresses through at least two independent steps: initial association with cilia, followed by formation of small aggregates, the latter of which is EPS-mediated; and (v) these two steps are not responsible for the resolution of symbiont specificity, which also occurs before *V. fischeri* cells enter host tissues.

An exquisitely sensitive recognition system

The picture emerging from this and other studies indicates elaborate biomechanical and biochemical under-
Figure A

Bar graphs showing the mutant bacteria per ciliated field relative to WT bacteria per ciliated field over time post-exposure for sypG- and rscS- and rscS++ mutant strains. The bars are labeled with significance levels: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure B

Images of wild-type and sypG- bacteria showing a distance of 15 µm between bacteria. The images are labeled with significance levels: *p < 0.05.

Figure C

A bar graph showing the distance between bacteria (µm) for ES114 sypG- and rscS++ strains. The bars are labeled with significance levels: *p < 0.05, n.s. (not significant).

Figure D

A bar graph showing the haemocytes per appendage for APO, ES114, sypG-, and rscS++ strains. The bars are labeled with significance levels: *p < 0.05.
specific activity of TCT as well as for requirement for direct contact with host cells for delivery of this microbe-associated molecular pattern, or MAMP.

The role of symbiont features in initial host-symbiont engagement

The finding that heat-killed *V. fischeri* cells were more perturbed than azide-killed cells in their association with the host raises the possibility of a heat-labile surface component that is involved in the formation of the interactions of these cells with host cilia. Mutants in surface features known to be important in bacterial pathogenesis, including those encoding a pilin protein, a porin, LPS O-antigen and the Mam7 protein were normal in their ability both to associate with the host cilia and to aggregate (Fig. S1). Further analyses with these mutants in the squid–vibrio system will determine whether they mediate normal engagement and interactions with the microvillous surfaces of the crypt epithelia. While mutants defective in these molecular features of the cell envelope had no detectable defects in initial interactions with the host because the partners are interacting at this time with their surfaces, screens directed at production of mutants in outer membrane molecules (Kaufman and Taylor, 1994) promise to be a fruitful area of future research on this system.

EPS production by *V. fischeri* is a well-studied essential feature of early interactions in the squid–vibrio system (Visick, 2009). Mutations in symbiont genes encoding molecules that synthesize the EPS or regulate its production are defective in colonization of the host animal. Examination of mutants defective in EPS production in the present study suggests that the formation of bacterial–bacterial interactions is a distinct process from association with the host cilia, and that aggregate formation in part is EPS-mediated. A two-step process during initial host engagement may also occur in *Vibrio cholerae*, where attachment of *V. cholerae* cells to chitin and mucin is mediated by the colonization factor GbpA (Wong *et al.*, 2012), and bacterial–bacterial interaction is controlled by the toxin-coregulated pilus (Kirm *et al.*, 2000). Whereas EPS has a profound effect on the ability of the bacteria to aggregate, it does not appear to play a role in either dominance within the aggregate by symbiosis competent *V. fischeri* over other related bacteria or in the induction of host haemocyte trafficking (Figs 5D and 6C). The fact that EPS is non-essential to these processes indicates that bacterial aggregation is most critical for the effect it has on communication among *V. fischeri* cells participating in the aggregate. Additionally, the data indicate that the formation of host–bacterial, rather than bacterial–bacterial interactions, are likely to play a role in the haemocyte-trafficking and dominance phenotypes.

We also found that *V. fischeri* cells are not capable of outcompeting non-symbiotic *Vibrio* spp., specifically *V. fischeri* MJ11 and *V. parahaemolyticus* KNH1, for attachment sites on the cilia or for early aggregation. This capacity of non-specific Gram-negative cells may be related to the large number of sites available for attachment on the host’s ciliated epithelial fields. These data also provide evidence that the dominance of *V. fischeri* observed in the mature aggregate (Nyholm and McFall-Ngai, 2003) is due to other factors, the production or presentation of which may be induced as downstream responses to earlier interactions of *V. fischeri* cells with host cilia.

A new model of early host–symbiont interaction in the squid–vibrio symbiosis

Earlier concepts of the squid–vibrio system postulated that host-shed mucus provides a sort of platform for aggregating symbiont bacteria. The data presented here on ciliary attachment, as well as earlier findings of abundant antimicrobials in the mucus matrix (Davidson *et al.*, 2004; Troll *et al.*, 2010), suggest that the mucus may be instead involved in the winnowing process, one in which
Fig. 6. The ability of non-symbiotic vibrios to associate with the ciliated epithelial field of the juvenile light organ. (Representative graphs; all experiments replicated at least twice).

A. Left: The effect of different lengths of exposure on the number of *V. fischeri* MJ11 and *V. parahaemolyticus* KNH1 bacteria/ciliated field after exposure to an inoculum of 5×10^3 CFU ml$^{-1}$. Right: The effect of inoculum size on the number of *V. fischeri* MJ11 or *V. parahaemolyticus* KNH1 cells per ciliated field after a constant exposure time of 3 h. Dashed line, standard error for *V. fischeri* ES114 controls. Data were analysed by a two-way ANOVA followed by a Bonferroni post-test for multiple comparisons, though no significant differences were found.

B. The effect of increasing *V. fischeri* ES114 inoculum size on the number of *V. parahaemolyticus* KNH1 bacteria/ciliated field. Exposure time, 3 h. KNH1 inoculum, 5×10^3 CFU ml$^{-1}$.

C. The effect of *V. fischeri* aggregation on the ability of *V. parahaemolyticus* KNH1 to compete with *V. fischeri*. Exposure time, 2 h. ($n = 5$ independent sample animals for all conditions). Bars, standard error.
V. fischeri is increasingly able to withstand biochemical challenges presented by the host. These data suggest a new model in which initial interactions between the host animal and **V. fischeri** cells involve a multi-step process (Fig. 7). Shortly after hatching, the host releases mucus stores from the light organ ciliated epithelia in response to environmental peptidoglycan (Nyholm et al., 2002). Then, environmental **V. fischeri** cells associate with host cilia, a behaviour that facilitates the delivery of TCT by a few cells to induce haemocyte trafficking into the blood sinus underlying the host ciliated epithelia [this paper, Koropatnick et al. (2007)]. Aggregation of **V. fischeri** occurs subsequently. This process, which is at least in part mediated by EPS (Visick, 2009), must involve migration of symbiont cells along the ciliated surface to affect cell–cell contact. During late aggregation, **V. fischeri** cells become competitively dominant in the aggregate and the cell populations localize near pores on the light organ surface, into which the cells migrate (Nyholm and McFall-Ngai, 2003). **V. fischeri** cells then disengage from the ciliated surface and migrate to these pores. There the cells sense chitobiose produced by the host, which they use for chemotaxis into host tissues (Mandel et al., 2012).

All horizontally transmitted symbioses undergo a habitat transition. The squid–vibrio system provides evidence of how intricate such a process can be. The findings presented here add pieces to the complex puzzle, but many questions remain unanswered. These questions include: What are the molecular mechanisms underlying attachment of **V. fischeri** cells to host cilia? Does attachment to the cilia induce changes in host gene expression and/or in the biochemistry of the environment around aggregating symbionts? How do the attached **V. fischeri** cells subsequently detach and move along the ciliated surface to form aggregates, eventually migrating to colonize host tissues? How is specificity in the mature aggregate of **V. fischeri** cells achieved? Although it is clear a good deal, more research must be done on the system before an accurate view of this process is achieved, the continued application of available methods, as well as the development of new technologies, such as single-cell transcriptomics and proteomics, promises to provide exciting avenues for future investigations of this system.

Experimental procedures

General methods

Adult *E. scolopes* were captured off the coast of Oahu and bred in aquaria as previously described (Montgomery and McFall-Ngai, 1993). Juveniles obtained from the breeding colony were collected within 15–20 min of hatching and
placed in unfiltered seawater (i.e. with \(\sim 10^6 \) environmental bacteria), which has no detectable *V. fischeri*, under the following conditions: (i) no additions, to generate the apysymbiotic condition or (ii) addition of various strains of symbiotic and non-symbiotic bacteria at varying doses and time periods indicated in the individual experiment. For inoculation, each strain was grown to mid-log phase and then diluted into seawater containing newly hatched animals grouped by treatment.

All *V. fischeri* and *V. parahaemolyticus* strains (Table 1) were grown shaking at 28°C in Luria-Bertani salt (LBS medium; Dunlap, 1989) or seawater-based tryptone media (Boettcher and Ruby, 1990) prior to inoculation of the animal. The numbers of cells added per millilitre of seawater was confirmed by determination of colony-forming units per millilitre (CFU ml\(^{-1}\)) on LBS-based agar plates. For antibiotic selection, chloramphenicol, tetracycline, erythromycin and kanamycin were used at concentrations of 5, 5, 5 and 50 \(\mu \)g ml\(^{-1}\) respectively.

Microscopy

To prepare specimens for SEM analyses, juvenile animals were exposed to *V. fischeri* cells at \(10^6 \) CFU ml\(^{-1}\) of seawater for 2–3 h. To confirm aggregate formation within an experiment, a subset of live animals was examined by confocal microscopy. The remainder of the animals was dropped into 1% osmium tetroxide in marine phosphate-buffered saline (mPBS) (50 mM sodium phosphate, 0.45 M sodium chloride, pH 7.4) and incubated for 30 min at room temperature on a rotator. This unusual fixation procedure arrests ciliary beat on the ciliated surfaces of molluscan epithelia (Reed and Satir, 1986). Fixed animals were dehydrated in an ethanol series from 30% to 100%. Specimens were dried in a Tousimis Samdri 780 critical point dryer (Tousimis, Rockville, MD, USA) and mounted with colloidal silver onto stubs dorsal side up. The tissue covering the light organs was removed, and the specimens were sputter coated with gold in a SeeVac Auto Conductavac IV (SPI Supplies, West Chester, PA, USA). The samples were examined on a Hitachi S-570 LaB6 scanning electron microscope (Hitachi, Tarrytown, NY, USA).

To visualize the cilia on the surface of the organ by confocal microscopy, samples were exposed at 45 min prior to the conclusion of a time course to 250 nM TubulinTracker (Invitrogen Life Technologies, Grand Island, NY, USA) and counterstained the cilia with TOTO-3 to localize nuclei. Samples were mounted on glass slides as previously described (Altura et al., 2011), and haemocytes were visualized and their abundance determined by confocal microscopy.

Assays with heat- or azide-killed *V. fischeri*

V. fischeri cells were grown as described earlier and then subjected to the following treatment for heat or metabolic inactivation. One hundred microlitre of *V. fischeri* culture at mid-log phase were transferred to an Eppendorf tube and incubated in a 50°C heat block for 1 h to heat inactivate the cells. To metabolically inactivate cells, they were handled similarly, but exposed to 0.1% sodium azide for 1 h at room temperature. Cells were checked for viability using propidium iodide staining as previously described (Nyholm and McFall-Ngai, 2003). For each of these conditions, we compared untreated to treated cultured bacteria by fluorescence microscopy to confirm that RFP fluorescence was not affected by the treatment.

Haemocyte trafficking assays

To determine numbers of haemocytes migrating into the blood sinus underlying the ciliated epithelium, animals were incubated with bacteria for 3 h and then fixed overnight in 4% paraformaldehyde in mPBS (50 mM sodium phosphate, 0.45 M sodium chloride, pH 7.4) at 4°C. Light organs were removed from the squid and permeabilized for 24 h in 1% Triton-X-100 (Sigma-Aldrich, St. Louis, MO, USA) in mPBS. To stain globular actin, which is highly abundant in haemocytes and thus used to localize haemocytes, the samples were incubated overnight in fluorescein isothiocyanate deoxyribonuclease 1, or FITC-DNAse I. The samples were counterstained with rhodamine phalloidin to localize the actin cytoskeleton, and with TOTO-3 to localize nuclei. Samples were mounted on glass slides as previously described (Altura et al., 2011), and haemocytes were visualized and their abundance determined by confocal microscopy.

Statistics

All statistical analyses were performed in Prism 5 software (GraphPad Software, Inc., La Jolla, CA, USA) as described in the figure legends.
Acknowledgements

We thank B. Krasty (University of Wisconsin–Madison) for wild-type and mutant strains of V. fischeri defective in the production of the O-antigen and K. Visick (Loyola University Health System, Chicago) for wild-type and mutant strains of V. fischeri defective in capsule production that were used in these experiments. This work was supported by grants from NIH AI 50661 to MM-N, NIH RR 12294 to EGR and MM-N, NSF IOS 0817232 to MM-N and EGR, and NIH-NRSA AI5397 to MAA.

Conflict of interest

The authors declare no conflict of interest.

References

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1. Attachment to HeLa cells by *E. coli* BL21 cells expressing MAM7 homologues from *Vibrio* spp.

Fig S2. The effect of mutations in surface features on *V. fischeri* attachment to host cilia.