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Abstract. Because of the importance of plasmids in many bacterial associations with plants and
animals, we determined the occurrence and distribution of plasmid DNA in symbiotic Vibrio
fischeri from the light organ of the sepiolid squid Euprymna scolopes. Analyses of 225 isolates of
symbiotic V. fischeri from 25 individual squids revealed an overall plasmid-carriage rate of 56%. A
large plasmid (=39 kb) was detected in 96% of those isolates carrying plasmids, and multiple small
plasmids were found to co-occur with one of the large plasmids in 81% of plasmid-carrying strains.
In addition, these plasmids appear to be restricted to V. fischeri strains isolated from E. scolopes and
from seawater at sites of squid populations. We were unable to assign a role or function to these
plasmids, but they do not carry genes required for the establishment of the light organ symbiosis.
We conclude that the essential bacterial symbiotic determinants must be encoded on the chromo-
some and that the plasmids may carry genes that are important for the survival of these V. fischeri

strains outside of the symbiotic association.

Vibrio fischeri is a luminous bacterium common within
the bacterioplankton of many regions of the ocean
[29]. In addition to this planktonic, or free-living,
niche, members of this species are the specific symbi-
onts in the light-emitting organs of both monocentrid
fishes [17, 39] and sepiolid squids [8, 36]. While we
still know little about how such complex, cooperative
associations with animal hosts are initiated or how
their bacterial specificity is maintained in the host
tissue, investigations with newly hatched, symbiont-
free (aposymbiotic) juveniles of the luminous Hawai-
ian squid, Euprymna scolopes, have demonstrated that
this symbiosis is an amenable model system for the
study of these processes (reviewed in [37]). In this
association the juvenile squid obtains its initial inocu-
lum of V. fischeri from the ambient seawater [51] and,
once colonized, becomes a source of excess V. fischeri
that are expelled into the surrounding environment
[23, 25, 36]. Thus, these bacteria have an ecological
cycle that consists of an alternation between a free-
living and a symbiotic niche [25, 36]. Recent work has
revealed that not all isolates of V. fischeri obtained
from seawater are capable of establishing themselves
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in the E. scolopes light organ [30]. To date, no
mechanism or basis for the observed differences in
symbiotic competency of V. fischeri strains has been
discovered.

The phenomenon of strain specificity in other
bacterial associations is well documented, and in
many cases the essential genes required for the
interaction of a bacterium with its plant or animal
host have been localized to regions of bacterial
plasmid DNA. For example, the fast-growing, Nj-
fixing species of the genus Rhizobium carry large
“symbiosis plasmids” necessary for successful nodula-
tion of leguminous plants [21, 30, 35]. Similarly, plant
pathogens such as Agrobacterium [48, 50] and some
species of Pseudomonas [6, 10, 11] harbor plasmids
with virulence-mediating genes. In addition, a num-
ber of species of animal pathogens in the genera
Escherichia (reviewed in 49]), Salmonella [22, 47],
Shigella [41, 42}, Yersinia [18, 53], and Vibrio [12, 13]
are characterized by the presence of virulence plas-
mids. In view of this pattern, it is surprising that there
are few reports of plasmids in bacteria that persist in
nonpathogenic associations with animals, and no
evidence that plasmids (when present) play an analo-

‘gous role in mediating these interactions.
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Table 1. Representative Vibrio fischeri isolates described in
this study

Native plasmids?

Strain® large small Year of isolation
ES12 + + 1988
ES66 - - 1988
ES79 + + 1988
ES114 + - 1988
ES191 - - 1989
ES209 + + 1989
ES213 + + 1989
ES235 - + 1989
ES240 - + 1989
ES324 + + 1990
ES334 + + 1990
ES560 - - 1992
ES566 - + 1992
ES595 + + 1992
ES602 + + 1992
ES620 + + 1992
ES657 + - 1992

@ Strain ES114 has been previously described [8].
b Presence (+) or absence (—) of a large plasmid (=39 kb) and/or
one or more small plasmids ( <12 kb) is indicated.

In this paper we describe both the prevalence of
plasmid DNA in symbiotic V. fischeri and the degree
of compositional similarity of these plasmids. Further-
more, we present evidence that such plasmid DNA,
while commonly occurring, is not necessary for the
early stages of colonization and persistence of bacte-
ria in the E. scolopes symbiosis. (A preliminary report
of this work has appeared previously [K.J. Boettcher,
K.-H. Lee, and E.G. Ruby, Abstr. Annu. Meet. Am.
Soc. Microbiol. 1990, I-80, p. 211]).

Materials and Methods

Bacterial strains and growth conditions. Symbiotic V. fischeri used
in this study were isolated from E. scolopes light organs and are
described in Table 1. Bacterial reference strains were: Vibrio
fischeri strains MJ1 [39] and B61 [2], V. anguillarum 775 [43], V.
harveyi B392 [32], V. logei ATCC 29985 [5], V. vulnificus 21 (R.
Rosson), V. orientalis ATCC 33934 [52], Photobacterium leiognathi
LN-1a [14], P. phosphoreum NZ11D {[38], and Rhizobium meliloti
1021 [27]. Marine bacteria were routinely grown in a seawater-
based medium (SWT) containing 5 g of tryptone, 3 g of yeast
extract, and 3 ml of glycerol per liter of 70% (vol/vol) natural
seawater, and solidified with 1.3% agar when desired.

DNA isolation and manipulation. Plasmid DNA was isolated by
the alkaline lysis method of Birnboim and Doly [7], modified by
Rodriguez and Tait [33]. Plasmid DNA from large-scale cultures
(250 ml) was further purified by CsCl-ethidium bromide density
gradient centrifugation [40]. Total genomic DNA was obtained by
the procedure described by Ausubel et al. [3]. Restriction endo-
nuclease analysis and routine agarose gel electrophoresis were
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performed according to standard methods {40]. For the detection
of megaplasmid DNA, the vertical gel electrophoresis method of
Eckhardt [16] and the horizontal gel electrophoresis method of
Simon [44] were used. After transfer to nylon filters [46], DNA wag
hybridized as described below.

DNA-DNA hybridization. Dot blots were prepared by transferring
equal amounts of cells to Nylon 66 Plus membranes (Hoefer
Scientific Instruments, San Francisco, California) before cell Iysis
and subsequent binding of the released DNA [40]. For production
of colony blots, planktonic bacteria were collected by passing
between 1 and 20 ml of natural seawater through a 0.2-um
pore-sized membrane filter (Millipore Corporation, Bedford, Mas-
sachusetts) that was then placed on SWT agar medium. After
colonies appeared, the cells were lysed and the DNA was bound to
the filter. DNA probes were generated as previously described [23)
and hybridized to prepared filters as described by Sambrook et al,
[40]. After washing under high stringency conditions [40], the
position and extent of probe hybridization was visualized by
autoradiography.

Curing experiments. Attempts to cure V. fischeri ES114 of its
plasmid DNA were performed by exposure to growth-inhibiting
concentrations of acridine orange (10 pg/ml), ethidium bromide
(75 wg/ml), and novobiocin (15 pg/ml) in SWT. After 48 h of
growth, cells were plated onto SWT agar. For each treatment,
between 10 and 20 individual colonies were subsequently screened
for the presence of plasmid DNA as described above.

Iron-limited growth experiments. A plasmid-containing V. fischeri
isolate (ES114) and a plasmidless isolate (ES191) were both tested
for their ability to grow in iron-limited media. The iron-chelator,
EDDA [ethylenediamine-di(o-hydroxyphenyl) acetic acid], defer-
rated by the method of Rogers [34], was added at concentrations
between 5 and 25 uM to an artificial-seawater-based medium
containing (per liter) 5 g of peptone, 3 g of yeast extract, and 3 ml of
glycerol. Cells grown to mid-log phase in SWT were diluted into 50
ml of each of these iron-limited media to a final Agy of 0.01. The
cultures were shaken at 25°C for 6 h, during which the optical
density and luminescence of the cultures were monitored [8].

Antibiotic resistance screening. To investigate the possibility of
plasmid-encoded antibiotic resistance, six different strains of V.
fischeri (some with plasmids, some without) were screened for
sensitivity to 19 antibiotics. After growth to mid-exponential phase
in SWT broth, equal amounts of cells were spread onto the surface
of an SWT agar plate. Antibiotic-impregnated disks (Difco) were
dispensed onto the plates, and zones of inhibition were measured
after a 24-h incubation at 27°C. Antibiotics tested were: penicillin,
ampicillin, erythromycin, tetracycline, novobiocin, chlorampheni-
col, cephalothin, colistin, nystatin, gentamicin, cefamandole, baci-
tracin, nalidixic acid, carbenicillin, methicillin, oxacillin, polymyxin
B, tobramycin, and nitrofuratoin.

Experimental infections. Experiments designed to determine the
infectivity and competitiveness of different strains of V. fischeri
were performed with a modification of a symbiotic-infection assay
described previously [26]. Clutches of eggs laid by female E.
scolopes were incubated in an aquarium containing California
coastal seawater (CCS). Immediately upon hatching, the juvenile
squid were transferred to vials containing 5 ml of CCS. Hatchlings
maintained in this water did not become infected because of the
low abundance of symbiosis-competent V. fischeri in CCS [26]. In
the infection assay, SWT-grown cultures of various bacterial strains
were diluted in CCS to a final concentration of approximately 10°
cells/ml. The animals were then transferred into vials containing
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Fig 1. Agarose gel electrophoresis and Southern blot analysis of undigested CsCl-purified, plasmid DNA from 12 strains of symbiotic V.
fischeri. (A Ethidium bromide-stained gel. Between one and eight closed circular plasmids are detectable in each of these isolates. When
present, the larger plasmids (>39 kb) also occur in the open circular conformation, which does not migrate out of the loading wells.
Occasionally, smal! amounts of the linear forms of the large plasmids are visible as faint bands below their closed circular forms. Most of the
smaller plasmids (<12 kb) appear both in the closed circular form and, in smaller amounts, as the more slowly migrating, open circular
form. Lanes: 1 and 14, supercoiled DNA size-standard ladder; 2, ES114; 3, ES12; 4, ES79; 5, ES213; 6, ES235; 7, ES324; 8, ES334; 9, ES566;
10, ES595; 11, ES602; 12, ES620; 13, ES657. (B) Corresponding autoradiograph of DNA transferred from “A” and probed with
radioactively labeled pES100. The top three hybridizing bands in lanes 2 through 5, 7, 8, and 10 through 13, represent the three

conformations of the large plasmid present in each of these strains.

the inoculated CCS, and the infection process was monitored with
a sensitive photometer. Successful colonization was indicated
within a few hours by the initiation of, and rapid exponential
increase in, luminescence by the squid [26]. At selected times after
infection animals were sacrificed, and the number and identity of
colony-forming units (CFU) arising on SWT plates spread with
dilutions of homogenates of the colonized light organs were
determined [36].

Results and Discussion

Plasmid carriage in symbionts. In total, 225 isolates
of V. fischeri obtained from the light organs of 25
adult and juvenile E. scolopes were screened for the
presence of plasmid DNA. Extrapolating from analy-
ses of between 5 and 10 isolates from each light organ,
only eight animals were found to harbor plasmid-
carrying isolates exclusively, while four of the animals
examined appeared to harbor symbiont populations
without any plasmids. In sum, 56% of the bacterial
isolates carried one or more plasmids. The occur-
rence of plasmids in planktonic isolates of V. fischeri
has not been well documented; however, the rate of
carriage is estimated to be approximately 30% [20,
45). The comparatively high incidence of plasmids in

the symbiotic V. fischeri suggested to us that plasmid
DNA might be important at some stage in the
development or maintenance of the symbiosis. There-
fore, we analyzed the composition and potential role
of plasmids in symbiotic V. fischeri.

A representative comparison of plasmid profiles
obtained from 12 different strains isolated during the
years 1988-1992 is shown in Fig. 1A. There was
considerable variation both in the number and sizes
of plasmids carried by isolates from different indi-
vidual host squids. In contrast, plasmid banding
patterns were generally similar among isolates from a
given animal; however, there were instances in which
as many as three types of plasmid profiles were
detected among isolates from an individual host. A
single large plasmid (which ranged in size from 39 to
50 kb) was present in 96% of those isolates carrying
plasmids, and multiple small plasmids (12 kb or
smaller) co-occurred with a large plasmid in 81% of
plasmid-bearing strains. Two in-well lysis gel electro-
phoresis procedures were also employed and failed to
reveal any very large plasmids (greater than 100 kb) in

“symbiotic V. fischeri, although megaplasmids from R.
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B

Fig 2. Comparison of the extent of sequence-relatedness of PES100 to the large (=39 kb) plasmids from 10 other isolates of symbiotic ¥/,
fischeri. (A) Ethidium bromide-stained gel of plasmid DNA. Lane 1, HindIll-restricted lambda DNA size markers. Lanes with
Hindlll-digested plasmid DNA: 2, ES114; 3, ES12; 4, ES79; 5, ES209; 6, ES213; 7, ES324: 8, ES334; 9, ES595; 10, ES602; 11, ES620; 12,
ES657. Lane 13, BamHI-restricted pES100; Lane 14, EcoRI-restricted lambda DNA size markers. (B) Corresponding autoradiograph of
DNA transferred from “A”, and probed with radioactively labeled pES100.

meliloti 1021 (each ~ 1500 kb) were detected (data
not shown).

Plasmid characterization. Typically, plasmids in-
volved in symbiotic or pathogenic associations tend to
be relatively large in size. For this reason, we became
interested in the sequence relatedness and possible
role of the large plasmids carried by symbiotic V.
fischeri. The E. scolopes symbiont V. fischeri ES114, a
strain that harbors a single 39.3-kb plasmid desig-
nated pES100 [9], was chosen for the hybridization
experiments described below.

Total plasmid DNA from 12 representative strains
was separated by agarose gel electrophoresis and
transferred to a membrane that was subsequently
probed with purified pES100 DNA (Fig. 1B). Be-
tween one and eight plasmids are visible in the
undigested preparations and do not (on the basis of
restriction enzyme analysis) include concatamers.
Although all of the large plasmids showed strong
hybridization to the probe, only one plasmid of the
smaller size class (the 7-kb plasmid from strain
ES602) showed any sequence similarity to pES100 as
indicated by hybridization. To further determine the
extent of sequence-relatedness of these plasmids, the
plasmid DNAs from a similar series of strains were
digested with HindIIl (Fig. 2A) and probed with
labeled pES100 DNA. Despite the strong degree of
hybridization evident between pES100 and the other
large plasmids (Fig. 1B), the patterns of restriction
products suggested that sequence divergence from an

N

ancestral plasmid had occurred (Fig. 2B). Neverthe-
less, in each case the sum of the lengths of all the
products approximated the predicted size of the
unrestricted large plasmid from which they were
derived. Thus, while some sequence divergence or
rearrangements within these plasmids may have taken
place, there was no evidence of major deletion or
insertion events,

One possible explanation for the absence of
plasmid DNA (such as the pES100-like plasmids) in
some of the symbiotic V. fischeri strains was that such
sequences had become integrated into the bacterial
chromosome. To investigate this possibility we
screened total DNA from cells of both plasmid-
bearing and plasmidless strains by dot blot analysis.
All but one of the six strains that had previously been
shown to contain plasmid DNA also hybridized with
the pES100 probe (data not shown). The nonhybridiz-
ing strain (ES240) was one of those that carries small
plasmids but that lacks a representative of the typical,
large plasmids (Table 1). Similarly, none of the 11
plasmidless strains tested exhibited detectable hybrid-
ization with pES100 DNA. Thus, it is unlikely that
chromosomal integration of some or all of the DNA
from a large pES100-like plasmid has occurred in any
of the symbiotic V. fischeri tested. There was also no
evidence of hybridization between pES100 and total
DNA isolated from representatives of several other
species of Vibrio (V. anguillarum, V. logei, V. harveyi,
V. orientalis, and V. vulnificus) or luminous species of
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the related genus Photobacterium (P. phosphoreum
and P. leiognathi), indicating that this plasmid does
not carry sequences that contribute to the general
identity of either the species V. fischeri or the marine
Vibrionaceae (data not shown).

Geographical range of the pES100-like plasmid. The
pES100-like sequences are not widely distributed
among the naturally occurring, culturable, marine
bacteria. Seawater samples collected from various
sites around E. scolopes habitats (in the Hawaiian
Islands), and at sites that do not harbor populations
of these animals (along the ¢oasts of southern Califor-
nia and Massachusetts), were used to prepare colony
blots that were subsequently hybridized with pES100
DNA. Although filters prepared from Hawaiian,
California, and Massachusetts seawater contained
many different kinds of colonies, including those
arising from indigenous planktonic V. fischeri cells,
hybridizing colonies were detected almost exclusively
on filters prepared from water collected at sites
inhabited by the host squid populations (Table 2).
Only two colonies that showed a weak degree of
hybridization to the probe were detected from water
collected at a site that is not an E. scolopes habitat. In
addition, dot blots were prepared with cells of 17
purified isolates of V. fischeri obtained from Hawaiian
and Californian waters. In this instance, the only
observable hybridization to the pES100 probe was to
DNA from isolates obtained from Hawaiian water
samples (data not shown). Thus, pES100-like plas-
mids appear to be harbored predominantly, if not
exclusively, by V. fischeri (and perhaps other bacteria)
in areas where there is a resident E. scolopes popula-
tion.

Experimental infections. The common occurrence of
pES100-like plasmids in the natural symbiotic associa-
tion and their apparent absence in other related
strains and species of bacteria suggested that the
presence of some or all of the genes carried on this
plasmid might confer competency to become a light
organ symbiont of E. scolopes. To test for the correla-
tion of plasmid presence with colonization effective-
ness, eight strains of V. fischeri (four of which har-
bored plasmid DNA) were tested for their ability to
initiate a symbiosis with juvenile squids. When pre-
sented alone, these strains were similarly effective at
initiating a light organ association with juvenile E.
scolopes (between 9 and 11 animals were included in
each test group; the infection success was 92 + 10%
for strains with plasmids and 98 + 5% for plasmidless
strains).
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Table 2. Distribution of pES100-like DNA sequences in
heterotrophic, colony-forming bacteria from pure culture and
coastal seawater sources

. %
Total  Estimated Number V. fischeri
colonies no. of with with

screened V. fischeri® pES100¢ pES100

ES114 suspension 150 150 150 100
Hawaiian seawater 1400 30 7 23
Californian seawater 1000 50 0 <2
Massachusetts sea-

water 4250 170 24 1.2

¢ See Materials and Methods for description of colony blot prepa-
ration.

®Based on hybridization with V. fischeri-specific Juxd probe (as
previously described [31]).

¢ Based on hybridization with pES100 probe (see Materials and
Methods).

4 Colonies showed weak hybridization to the probe.

These results demonstrated that plasmid DNA is
not necessary for the initial infection event when only
one strain of V. fischeri is presented to each potential
host. However, in their natural environment, juvenile
squid are likely to encounter a number of different
strains of planktonic V. fischeri before becoming fully
colonized [24]. Thus, the possibility remained that,
while not an absolute requirement, the carriage of
plasmids by certain strains might place them at a
competitive advantage over other strains in becoming
established symbionts. To test this hypothesis, 20
juvenile squid were exposed to seawater that con-
tained a mixture of equal numbers of bacteria with
and without the pES100-like plasmid. There was no
significant difference in the ability of plasmid-
carrying strains to outcompete plasmid-free strains
during the first 48 h of infection and colonization: 5
animals were colonized by the plasmid-carrying strain
exclusively, 4 harbored only the plasmidless symbi-
onts, and the remaining 11 animals carried a mixture
of plasmid-carrying and plasmidiess strains. Thus, as
examined in the standard infection assay, pES100-
like plasmids do not appear to mediate a significant
event in the initial stages of the symbiosis between V.
fischeri and E. scolopes. Futhermore, we consider it
unlikely that the plasmids are involved in some later
stage (i.e., after the initial 48 h of infection) in the
symbiosis because of the lack of any correlation
between the size (age) of field-caught host animals
and the degree of plasmid carriage by their symbionts
(data not shown). It is likely that the essential
functions required by V. fischeri for its alternate niche
as a light organ symbiont are chromosomally en-
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coded, and the construction of chromosomal mutants
has allowed the identification of these determinants
to begin [19].

In spite of the apparent lack of a direct role for
plasmid DNA in this symbiosis, several important
insights can be gained from the results of this study.
First, the dynamics of colonization and maintenance
of symbiont populations by E. scolopes are more
complex than previously assumed. Our results suggest
that juvenile squids are capable of being colonized by
more than one strain of bacteria. The presence of
mixed populations of plasmid-carrying and plasmid-
less strains, including populations with up to three
distinct plasmid profiles, among symbionts in the light
organ of an individual field-caught animal, indicates
that multiple infection events do occur in nature.
Because we did not observe any evidence for the loss
or horizontal transfer of plasmid DNA among symbi-
otic V. fischeri, either in culture or during the initial 48
h after colonization of the light organ, it is unlikely
that these differences within natural symbiont popula-
tions reflect post-infection events. The hypothesis of
multiple inoculations has a structural basis in the fact
that there are six pores on the surface of uncolonized
juvenile light organs, each leading to a separate crypt
that is available for colonization by symbiotic strains
of V. fischeri [26, 28]. In short, the evidence suggests
that the natural light organ association is probably
not a “pure culture” in the strictest sense. We
propose instead that the term “monospecific” be used
to describe the light organ population of E. scolopes
to distinguish it from bacterial light organ associa-
tions of fishes, for which a single inoculation event has
been inferred. [29, 39].

Possible functions for plasmids. At present the role
or function of plasmids in symbiotic V. fischeri re-
mains unknown, although we have been able to
eliminate some common plasmid-mediated pheno-
types. For example, no difference in the ability to
grow on rich media, single carbon source media, or
media that were carbon or iron limited was observed
between isolates that did or did not harbor a pES100-
like plasmid (data not shown). In addition, no correla-
tion was observed between plasmid carriage and
resistance to a number of antibiotics. Of the 19
antibiotics tested (see Materials and Methods), both
classes of strains were resistant to the same group of
six (penicillin, ampicillin, nystatin, bacitracin, methi-
cillin, and oxacillin), suggesting that these are intrin-
sic chromosomally encoded characteristics of the
species V. fischeri. Finally, this plasmid does not
appear to carry genes required for the normal regula-
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tion or expression of the bioluminescent phenotype
because there was no detectable hybridization be-
tween pES100 and pPD201, a plasmid that appar-
ently contains all of the essential genes of the V.
fischeri lux regulon [15] (data not shown).

Cryptic plasmids are common in symbiotic Psey-
domonas, Agrobacterium, and Rhizobium strains that
have an important free-living phase outside of the
plant host, and it is believed that these cryptic
plasmids contribute in some unknown way to these
species’ persistence in the soil niche [1, 4, 31].
Similarly, the planktonic niche of Hawaiian V. fischeri
plays a major role in the ecological cycle of these
bacteria [25]. The almost exclusive confinement of
the pES100-class of plasmids to V. fischeri from light
organs and Hawaiian seawater (Table 2), the tempo-
ral stability over at least 4 years of these plasmids
within the population of bacteria that occur as symbi-
onts of Hawaiian squids, and the recalcitrance of
these plasmids to curing by treatment in culture with
acridine orange, ethidium bromide, or novobiocin
(data not shown) all suggest that these plasmids must
contribute in some way to the fitness of these strains
when the bacteria find themselves outside of the light
organ, perhaps while in the seawater environment
between host associations [25].
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