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Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life
cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to
grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that
confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness
behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were exam-
ined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena
pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola
species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antipro-
tozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory ef-
fects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive
advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive
mechanisms that exist in the out-of-host environment.

Biofilms form at almost every surface that is in contact with
water, and they are a natural part of aquatic ecosystems (1, 2).

Moreover, biofilm communities offer a refuge toward diverse
stresses, such as antibiotics (3–5), dehydration and osmotic stress
(5, 6), UV light exposure (6, 7), and starvation (3). The pro-
nounced stress resistance of biofilms has been observed to be prev-
alent in marine communities, particularly ones comprised of en-
vironmental Vibrio biofilms (2, 8, 9).

Biofilms formed by Vibrio species are ubiquitous in aquatic
ecosystems, although no study has specified the prevalence of
Vibrio fischeri biofilms. V. fischeri (and other marine bacteria) in
its planktonic state are found over broad geographical ranges, and
their biofilms are subjected to multiple physiological stresses that
lead to alterations in bacterial physiology (promoting bacterial
fitness and bacterial speciation) (10). Thus, the survival of plank-
tonic cells and biofilms in the environment is not only defined by
the capacity to overcome abiotic pressures but also by the ability to
serve as a protective niche against natural protozoan consumers
(11, 12). Thus, an alternative function for the prevalence and rel-
ative fitness of V. fischeri biofilms is that they serve as refuges to
combat a range of predators, including protozoan grazers. Graz-
ing is one of the most common mortality factors of bacterial pop-
ulations (13–15) and causes rapid changes in the morphology and
species composition of microbial communities (13, 16–18). Inter-
actions between bacteria and protozoa within biofilm communi-
ties remain largely unexplored; however, recent studies have re-
vealed the impact of grazing on the dynamics of natural biofilm
communities. Quorum sensing is an important factor for anti-
predatory activity in many bacterial species (19–22), and observa-
tions have suggested that bacterial genetic diversity enhances graz-
ing resistance (23). Grazing resistance was observed in biofilms of
Pseudomonas aeruginosa when early and late biofilm communities
exhibited antipredatory behavior against two flagellates (Bodo sal-
tans and Rhynchomonas nasuta) and the ciliate Tetrahymena sp.
(18). Similar results were also observed when communities of

Vibrio cholerae prevented predation through an antiprotozoal fac-
tor regulated by the response regulator HapR (14, 20). Moreover,
V. cholerae biofilms exhibit widespread grazing resistance among
toxigenic and nontoxigenic isolates, which has an impact on strain
distribution and cholera epidemics (20). Previous studies also re-
ported that some bacterial communities synthesize chemical com-
pounds (e.g., violacein) that inhibit protozoan feeding by induc-
ing cell lysis. These specific chemical defenses are prevalent in the
tropical aquatic and soil bacterium Chromobacterium violaceum
and other marine bacteria, such as Janthinobacterium lividum and
Pseudoalteromonas luteoviolacea (24).

The protozoan community in marine ecosystems is cosmopol-
itan and follows a succession pattern depending on the nature of
the grazer. For example, early biofilm colonizers (or generalists,
including flagellates and ciliates) are highly motile, allowing fast
surface feeding, while intermediate late colonizers (some ciliates
and amoebas) are classified as specialists and are abundant in ma-
ture biofilms (25, 26). Therefore, the aim of our study was to
investigate whether V. fischeri biofilms are resistant to protozoan
grazing, and if any differences exist in predator avoidance between
various free-living and symbiotic strains. We tested symbiotic
strains isolated from the light organ of two different squid genera,
Euprymna (Indo-West Pacific) and Sepiola (Mediterranean), along
with free-living strains isolated directly from seawater. Three dif-
ferent protozoan predators among the 20 most commonly re-
ported species of predators were chosen for these studies (20, 25)
and included two early-feeding flagellates, Neobodo designis and
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Rhynchomonas nasuta, and the late ciliate colonizer Tetrahymena
pyriformis. This experimental setting allowed us to identify bio-
film survival depending on (i) strain type, (ii) age of biofilm, (iii)
protozoan colonizer, and (iv) protozoan feeding type, and these
factors have implications for understanding how V. fischeri sur-
vives, persists, and diversifies in the presence of grazers.

MATERIALS AND METHODS
Bacterial and protozoan strains used in this study. Bacterial strains used
in this study are listed in Table 1. V. fischeri strains were grown on Luria-
Bertani high-salt agar (LBS; with a per liter composition of 10 g tryptone,
5 g yeast extract, 20 g sodium chloride, 50 ml 1 M Tris [pH 7.5], 3.75 ml
80% glycerol, 15 g agar, and 950 ml distilled water) and incubated for 24 h
at 28°C. V. fischeri strains were isolated from different squid light organs
captured live (Euprymna or Sepiola) or directly from seawater (27). All
strains were subsequently subcultured in LBS liquid medium (no agar)
and incubated with moderate shaking (200 rpm) for 18 h. The benthic
flagellate grazers R. nasuta and N. designis were isolated from Chowder
Bay at the Sydney Institute for Marine Science (SIMS), New South Wales,
Australia, treated with an antibiotic cocktail (kanamycin, gentamicin,
streptomycin, ampicillin, and trobamycin at 150 �g/ml each), and diluted
through many generations (�15) to remove the natural bacterial com-
munity (14). R. nasuta and N. designis were maintained axenically in 0.5�
nine salts solution medium (NSS; with a per liter composition of 8.8 g
NaCl, 0.735 g Na2SO4, 0.04 g NaHCO3, 0.125 g KCl, 0.02 g KBr, 0.935 g
MgCl2 · 6H2O, 0.205 g CaCl2 · 2H2O, 0.004 g SrCl2 · 6H2O, 0.004 g
H3BO3). Additional cultures were supplemented with heat-killed P.

aeruginosa, which served as prey. The ciliate T. pyriformis (CCAP 1630/
1W; Culture Collection of Algae and Protozoa, Windmere, United King-
dom) was maintained in PPY medium (with a per liter composition of 20
g proteose peptone and 2.5 g yeast extract). Cultures were incubated at
room temperature (20 to 23°C) for 2 weeks.

Grazing assays. Grazing experiments were completed in 24-well mi-
crotiter plates as previously described (20) for both early and late biofilms.
For the early setup, overnight cultures of all bacterial strains were incu-
bated at a dilution of 106 cells per ml in a total of 1 ml of fresh Väätänen-
NSS medium (VNSS; with a composition of 1 g peptone, 0.5 g yeast ex-
tract, 0.5 g dextrose, 0.01 g FeSO4 · 7H2O, 0.01 g Na2HPO4, mixed with 1
liter of NSS medium) (14), which allowed growth of both bacteria and
protozoa. As a negative control, sterile uninoculated VNSS medium was
used. Strains were grown for 6 h (to let the early biofilm to become estab-
lished) at room temperature (28°C) in the 24-well microtiter plates, and
subsequently the planktonic population was removed and replaced with 1
ml of fresh VNSS medium that contained overnight cultures of either R.
nasuta or N. designis (early grazers) at an abundance of 102 cells per ml. In
the late biofilm setup, overnight cultures of all bacterial strains were inoc-
ulated as described for the early biofilm setup, but with the bacterial bio-
films forming for 24 h prior to addition of the late biofilm grazer T.
pyriformis. After formation of mature (late) biofilms, the planktonic sus-
pension was removed and Tetrahymena was added at a concentration of
102 cells per ml. Plates were incubated for 24 h at 20°C with shaking at 50
rpm. Additionally, as a positive control, bacterial cultures were inoculated
in parallel (106 cells per ml in 1 ml of VNSS medium) and incubated
without protozoan grazers for 6 h (early biofilms) or 24 h (late biofilms)
with shaking (50 rpm) at 20°C. For each experiment, all samples were
inoculated in triplicate (3 wells), and assays were repeated three times (3
independent studies), for a total of 9 wells per bacterial strain.

Enumeration of protozoans and quantification of biofilm forma-
tion. Numbers of grazers and grazer growth rates were calculated from
direct cell counts using light microscopy. The number of grazers was
calculated when 5 �l of supernatant was fixed with acid Lugol’s solution
(5%, final concentration) and enumerated using direct microscopy. Bac-
terial biofilms were measured using a colorimetric assay, where the super-
natant from each plate was removed and wells were washed three times
with 1 ml of sterile VNSS medium. One milliliter of 0.2% crystal violet
solution was added to each well, and the mixture was incubated for 30 min
at room temperature. After incubation, the crystal violet solution was
removed and plates were washed five times with distilled water and dried.
One milliliter of ethanol (95%) was added, and plates were incubated for
30 min to allow the dye to solubilize. The contents of each well (including
negative controls) were transferred to a new plate, and the optical density
was measured at 562 nm using a plate reader (Bio-Tek FLX 800; MTX Lab
systems Inc., VA). The optical density observed is directly proportional to
the amount of biofilm formed, and values were corrected by blank read-
ings (uninoculated VNSS wells). For biofilm biomass quantifications,
pairwise comparisons were performed using two-factor analysis of vari-
ance and Tukey’s post hoc comparisons in order to test for significant
differences between treatments (grazing versus nongrazing). Three plates
were used for evaluation of statistical significance (3 independent studies).

Scanning electron microscopy. To observe toxic effects or morpho-
logical changes in the protozoan cultures, light microscopy and scanning
electron microscopy (SEM) were performed. Overnight cultures of all
strains were reinoculated in triplicate in glass test tubes containing 5 ml of
VNSS with an immersed sterile coverslip. Early (2 sets of tubes) or late (1
set of tubes) biofilms were allowed to form. After 6 or 24 h of incubation,
grazers were added (either Rhynchomonas or Neobodo for the early bio-
films and Tetrahymena for the late biofilms) and incubated at room tem-
perature for 24 h. After incubation, coverslips were washed with sterile
VNSS, fixed with a 0.5% solution of glutaraldehyde, and gold coated for
SEM with a Hitachi S34000 SEM apparatus (Hitachi, Schaumburg, IL) as
previously described (19).

TABLE 1 Vibrio fischeri strains used in this study

Strain Host Location

WH1 Free living USA (Woods Hole, MA)
MDR7 Free living USA (Marina del Rey, CA)
CB37 Free living Australia (Coogee Bay, Sydney, NSW)
CB21 Free living Australia (Coogee Bay, Sydney, NSW)
CHB8 Free living Australia (Chowder Bay, Sydney, NSW)
CHB12 Free living Australia (Chowder Bay, Sydney, NSW)
CHB30 Free living Australia (Chowder Bay, Sydney, NSW)
BSM40 Free living France (Banyuls sur mer)
BSM46 Free living France (Banyuls sur mer)
BSM50 Free living France (Banyuls sur mer)
PP3 Free living USA (Kaneohe Bay, O’ahu, HI)
PP42 Free living USA (Kaneohe Bay, O’ahu, HI)
VLS2 Free living USA (Kaneohe Bay, O’ahu, HI)
SR5 Sepiola robusta France (Banyuls sur mer)
SL518 Sepiola lingulata France (Banyuls sur mer)
SA1G Sepiola affinis France (Banyuls sur mer)
SA18 Sepiola affinis France (Banyuls sur mer)
SA25 Sepiola affinis France (Banyuls sur mer)
SA70 Sepiola affinis France (Banyuls sur mer)
SI66 Sepiola intermedia Italy (Bari)
SI1D Sepiola intermedia France (Banyuls sur mer)
EM17 Euprymna morsei Japan (Tokyo Bay)
ET101 Euprymna tasmanica Australia (Townsville, QLD)
ETWW Euprymna tasmanica Australia (Woy Woy, NSW)
ETBB20 Euprymna tasmanica Australia (Botany Bay, Sydney, NSW)
ETBB45 Euprymna tasmanica Australia (Botany Bay, Sydney, NSW)
ETBB67 Euprymna tasmanica Australia (Botany Bay, Sydney, NSW)
ETSB1 Euprymna tasmanica Australia (Shark Bay, WA)
EB12 Euprymna berryi Japan (Tosa Bay)
ES114 Euprymna scolopes USA (Kaneohe Bay, O’ahu, HI)
ESP915 Euprymna scolopes USA (Paiko, O’ahu, HI)
ESL5 Euprymna scolopes USA (Kaneohe Bay, O’ahu, HI)
ESC9 Euprymna scolopes USA (Kaneohe Bay, O’ahu, HI)
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RESULTS
Resistance to grazing of early and late biofilms. To determine
potential inhibitory effects of biofilms (early and late) against
three different protozoans with contrasting feeding modes, we
compared the quantity of bacterial biofilm that was formed with
and without exposure to each predator (Fig. 1). For early symbi-
otic strains, a significant reduction (P � 0.001) in biofilm biomass
was observed after addition of the ciliated predator T. pyriformis,
whereas biofilms formed by free-living strains (Table 1; Fig. 1) did
not show any significant differences from nongrazed biofilms. In
late biofilms, the raptorial feeder R. nasuta had no effect on the
biomass of any of the strains examined; however, the flagellate N.
designis was able to reduce the biofilm biomass of all strains by
more than 30% (P � 0.05).

Biofilms cause a decrease in predator number. In this study,
we hypothesized that a reduction in the number of grazers would
occur if the biofilm biomass did not decrease compared to cells
that were consumed. Our experiments demonstrated that anti-
protozoal effects occurred in both early and late biofilms and that
variations in toxicity exist between the two early biofilm flagel-
lates, consistent with other protists that have similar feeding
modes (28, 29).

Protist abundance decreased in every case that the biofilms
persisted (Fig. 2). Growth rates of T. pyriformis (ciliate, late grazer)
were significantly reduced when exposed to biofilms formed by
free-living strains (isolated from France, Australia, and the United
States) (Table 1; Fig. 1), whereas high growth rates were observed
when symbiotic biofilms were grazed. The same pattern was ob-
served with N. designis (flagellate, early grazer), where numbers
increased after grazing of early biofilms formed by both symbiotic
and free-living strains. Interestingly, R. nasuta (flagellate, early
grazer) numbers decreased when grazing on both symbiotic and
free-living early biofilms.

Microscopy studies. Biofilms that were preformed on a glass
coverslip were exposed to all grazers for 24 h and then examined

via SEM in order to visualize possible toxic effects after grazing.
Vibrio strains that were successfully grazed by the free-swimming
filter feeder T. pyriformis (including most of the symbiotic strains)
were found on glass coverslips with T. pyriformis (Fig. 3). The
small amount of glass-associated biofilm was distinguishable from
the larger ciliated T. pyriformis (late grazer). Additionally, evi-
dence of grazing activity was present and included signs of active
feeding by a large number of ciliated protozoa (Fig. 3A and B).
Discernible changes in grazer morphology were observed in T.
pyriformis after grazing on free-living strains (Fig. 4). Two differ-
ent phenotypes in protozoan structure were observed, including
grazing morphology (Fig. 4A and B) and cell lysis (Fig. 4C and D).
Late biofilms (24 h) were formed at the air-liquid interface of

FIG 1 Quantification of biofilm biomass of free-living and symbiotic (Euprymna and Sepiola) V. fischeri strains before grazing (gray bars) and after grazing
(white bars) on early (R. nauta and N. designis) and late (T. pyriformis) biofilms. The optical densities were measured after solubilization of crystal violet, with the
abundance of biofilm considered directly proportional to the optical density reading. Error bars represent the standard deviations. *, P � 0.05 for the difference
between grazed and nongrazed bacteria; **, P � 0.01. The composite data are from 13 free-living strains, 8 Sepiola strains, and 12 Euprymna strains (see Table 1).

FIG 2 Protozoan growth rates after grazing on early and late biofilms. Nega-
tive numbers represent mortality, and positive numbers represent growth.
Different bar patterns represent different groups of V. fischeri isolates (free-
living or symbiotic with Euprymna or Sepiola). Errors bars are the standard
deviations for each treatment. Each protozoan group was significantly differ-
ent from the others (P � 0.05), and within the Tetrahymena group there was a
significant difference in growth rate when free-living strains were grazed (P �
0.05).
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coverslips. Immediately after biofilm formation, Tetrahymena was
added to the cultures, and after 24 h coverslips were analyzed
using SEM. We observed two different coverslips per strain (for
the protozoa Tetrahymena), and 60% of them exhibited a pheno-
type change for Tetrahymena, with protozoan lysis being the most
common phenotype (after grazing biofilms formed by free-living
strains).

DISCUSSION

Vibrios are a ubiquitous diverse group of heterotrophic bacteria that
are found in oceans, estuaries, and marine sediments worldwide. The
diversity and dynamics of cooccurring populations has frequently

been linked to environmental changes, including fluctuations in tem-
perature, salinity, ocean hydrodynamics, and nutrient composition
(10, 30). Therefore, environmental fluctuations lead to considerable
bacterial microdiversity and evolution, including evolution of a wide
variety of pathogenic and facultative mutualistic strains. The latter
include the bioluminescent bacterium V. fischeri, which exists in a
free-living stage (seawater) or as a mutualist of sepiolid squids and
monocentrid fishes (31–33).

Understanding the influences of abiotic factors on V. fischeri
biofilm populations has become a central theme of our research
(10, 27); however, success in the environment is also dictated by
the ability of the biofilm to tolerate natural protozoan consumers.

FIG 3 SEM images of T. pyriformis grazing dynamics. (A) T. pyriformis cells on a mature V. fischeri biofilm. (B) Magnification of T. pyriformis and the biofilm.
(C) T. pyriformis grazing through a filter feeding strategy.

FIG 4 SEM images of the antiprotozoan effects on T. pyriformis. (A and B) Morphological changes in the grazer and the bacterial growth around the predator.
(C and D) Cell lysis of the grazer. Arrows in panels A and C point to the corresponding grazers that are shown in panels B and D.
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Recent studies have emphasized the effects of protozoan grazers
(17, 23, 34, 35), particularly in Vibrio communities, such as V.
cholerae (12, 14), but not in communities of other species, includ-
ing mutualists, such as V. fischeri and V. logei. In this study, we
investigated the effects of common bacteriovores T. pyriformis
(ciliate, late grazer), N. designis (flagellate, early grazer), and
R. nasuta (flagellate, early grazer) on 33 V. fischeri isolates from
different origins, including seawater and two squid genera:
Euprymna, found in Indo-West Pacific waters, and Sepiola, found
in the Mediterranean Sea. Symbiotic strains were chosen based on
their similar growth and infection capabilities (all symbiotic
strains could infect juvenile sepiolid squids) despite being from
different host squids and geographical locations, whereas free-
living strains were chosen based on their inability to infect juvenile
squids yet their being found ubiquitously in the ocean.

Our results indicated that biofilms may protect V. fischeri from
predation. For example, when the generalist ciliate T. pyriformis
(late grazer) was added to late biofilms, a selective resistance to
grazing was exhibited by free-living strains only and not symbiotic
strains. Earlier work showed that free-living strains of V. fischeri
are able to grow under a wider variety of conditions than their
symbiotic relatives (10). This demonstrated that free-living strains
have better adaptive mechanisms, which may be the result of ge-
netic changes responsible for shifts in bacterial phenotypes (for-
mation of biofilms) (2, 3).

It has been reported that biofilms of different species of envi-
ronmental isolates secrete antiprotozoan factors, such as violacein
(24) and others of an unknown nature (15, 20). These compo-
nents may be present in V. fischeri biofilms, but they have not been
identified thus far. T. pyriformis is a ciliated protozoa that grazes
mature biofilms, similar to the ones found in the environment.
Conversely, biofilm-like structures formed in the squid’s light or-
gan are expelled daily due to the diurnal cycle of the squid. This
cycle allows exponential growth of V. fischeri followed by an ex-
pulsion of 99% of the symbionts into seawater every day at dawn
(33, 36, 37). Thus, diel expulsion of a large number (1014) of bac-
teria possibly disrupts the preformed biofilm and therefore does
not select for production of antiprotozoan compounds. More-
over, these strains may be exposed less frequently to predation and
therefore are less capable of responding to predators that are only
found in the aquatic environment, as in the case of the protozoan
grazers used in this study.

Early biofilms were exposed to the flagellates N. designis and
R. nasuta, which have different feeding modes and are consider-
ably smaller in size than T. pyriformis (200 times bigger than V.
fischeri). Our results revealed that early biofilms exposed to N.
designis were consumed, resulting in a pronounced increase in
flagellate numbers, which was opposite to observations for the
flagellate R. nasuta. These contrasting results indicate that flagel-
late size is not necessarily correlated to grazing dynamics. For
example, N. designis is a direct interception feeder, creating cur-
rents that carry suspended or loosely attached bacteria toward the
mouth (28). R. nasuta is a raptorial feeder that grasps its prey with
a proboscis-like structure (26). Another major difference between
these two flagellates is that R. nasuta has a lower grazing (inges-
tion) success in sparsely populated biofilms due to its slower mov-
ing speed, and it is more successful in waters with higher prey
densities (38). These different feeding modes may be crucial to the
grazing success regarding V. fischeri biofilms. Symbiotic V. fischeri
strains also exhibit resistance to R. nasuta predation (Fig. 1), indi-

cating that some defensive mechanism still exists within biofilms
formed by mutualistic strains. These defenses may be coopted to
avoid the squid host innate immune response, which is mostly
comprised of hemocytes and macrophages (39, 40). Future studies
will focus on whether receptor-mediated phagocytosis in proto-
zoa affects immune response evasion through biofilm formation.

In this study, protozoan abundance was reduced after grazing,
and antiprotozoan effects on T. pyriformis (ciliate, late grazer)
were observed (Fig. 2). Morphological changes of T. pyriformis
occurred with bacteria possibly colonizing the protozoan preda-
tor, resulting in subsequent lysis of T. pyriformis cells. These two
effects may be the result of inactivation of the predator or synthe-
sis of lytic compounds that are released before or after ingestion of
V. fischeri cells.

Quorum sensing controls biofilm formation (41) and has been
described as one possible mechanism for antiprotozoal activity
(20). In the case of V. fischeri, quorum sensing is under the control
of the transcriptional regulator LuxR-LuxI (8). In addition to
genes involved in light production, the LuxR regulon activates
another number of genes involved in synthesis of efflux proteins,
transporters, permeases, and proteases (8). The role of these quo-
rum-sensing proteins in antipredator activity is unknown; how-
ever, they may contribute to the competitive fitness of biofilms
under grazing pressure. Future studies will help determine the
genetic factors responsible for protozoan death and may provide
important clues of how survival of Vibrio biofilms is linked to
quorum-sensing mechanisms.

The nature of the protozoan predator and its feeding charac-
teristics may influence the impact of grazing on V. fischeri bio-
films. Late/early and generalist/specialist protists have distinct
grazing preferences, which are related to the type of V. fischeri
strain examined (free living or symbiotic). Here we showed that V.
fischeri biofilms have the ability to quickly adapt to grazing pres-
sure, possibly by releasing antigrazing compounds and products
that negatively influence protist survival. The observation that
free-living strains are considerably more resistant to grazing pres-
sure than symbiotic strains suggests that host selection may com-
promise the fitness of V. fischeri strains that are more amenable to
a stable (and predatorless) environment than the external envi-
ronment. Future research will address various adaptive mecha-
nisms of bacteria-protist interactions that share fundamental pro-
cesses with host immune responses.
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