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The light–organ symbiosis between the squid Euprymna scolopes
and the luminous bacterium Vibrio fischeri offers the opportunity
to decipher the hour-by-hour events that occur during the natural
colonization of an animal’s epithelial surface by its microbial
partners. To determine the genetic basis of these events, a glass-
slide microarray was used to characterize the light-organ transcrip-
tome of juvenile squid in response to the initiation of symbiosis.
Patterns of gene expression were compared between animals not
exposed to the symbiont, exposed to the wild-type symbiont, or
exposed to a mutant symbiont defective in either of two key
characters of this association: bacterial luminescence or autoin-
ducer (AI) production. Hundreds of genes were differentially reg-
ulated as a result of symbiosis initiation, and a hierarchy existed in
the magnitude of the host’s response to three symbiont features:
bacterial presence > luminescence > AI production. Putative host
receptors for bacterial surface molecules known to induce squid
development are up-regulated by symbiont light production, sug-
gesting that bioluminescence plays a key role in preparing the host
for bacteria-induced development. Further, because the transcrip-
tional response of tissues exposed to AI in the natural context (i.e.,
with the symbionts) differed from that to AI alone, the presence of
the bacteria potentiates the role of quorum signals in symbiosis.
Comparison of these microarray data with those from other sym-
bioses, such as germ-free/conventionalized mice and zebrafish,
revealed a set of shared genes that may represent a core set of
ancient host responses conserved throughout animal evolution.

Euprymna � fischeri � microarray � symbiosis

Among the most common beneficial microbial associations are
those between bacteria and the host epithelia they colonize. In

many associations, a complex program of tissue adaptation and
development is triggered by the presence of the symbionts (1–3);
however, the nature of these programs and how they lead to the
initiation of persistent beneficial relationships are poorly under-
stood. Such knowledge is a vital part of understanding both how
animals achieve a healthy state and how an invasion by pathogens
compromises its maintenance. To address these questions, biolo-
gists are using a variety of vertebrate and invertebrate model
systems that each reveals insights into a different aspect of host–
bacteria interaction, such as cell–cell signaling, development, and
immune response (4–10). Comparative studies among these various
associations have had three broad goals: (i) to determine traits that
are shared across the animal kingdom, (ii) to identify the factors
driving the diversification of specific symbioses, and (iii) to define
the principal differences between how the host interacts with a
beneficial partner and with a pathogen. Recent progress toward
these goals has followed technological advances on a number of
fronts, including the creation of bioinformatics tools for inferring
the composition and activities of a host’s microbial partners (11, 12).
In addition, genome-wide analyses of host gene expression during
the development of an association have revealed the number and

identities of genes that are differentially regulated in the formation
of a successful, stable interaction at the epithelium–bacteria inter-
face (5, 13).

The symbiotic association between the Hawaiian squid Eupry-
mna scolopes and the luminous bacterium Vibrio fischeri has served
as a useful model to analyze the onset and maintenance of a natural
host–microbe relationship (10, 14). In this association, V. fischeri
occurs as a monoculture growing along the apical surfaces of the
epithelia that line crypts located deep within the squid’s light-
emitting organ. The nascent light organ of a newly hatched juvenile
squid is free of symbionts (or ‘‘aposymbiotic’’) and, while being
exposed to the hundreds of bacterial species present in seawater,
becomes colonized only by V. fischeri. Despite this specificity, the
association is initiated within minutes of hatching as bacteria within
the seawater begin to gather in host-derived mucus shed by the
superficial epithelia of the organ. Three to four hours later the
amassed V. fischeri cells migrate to pores on the organ’s surface,
travel up cilia-lined ducts, and enter the blind-ended crypts. Inter-
action with the bacteria also induces development of host tissues:
most notably, at �12 h after inoculation, the symbionts trigger the
irreversible loss of the superficial epithelium (Fig. 1), with which
they are not in direct contact. The regression of this epithelium
involves a series of events, including the trafficking of macrophage-
like cells into the tissue, apoptosis of the epithelial cells, and an
eventual sloughing of these cells. This extensive morphogenesis is
mediated by molecules released by the symbionts, including the
lipid A component of LPS and the tetrapeptide monomer of
peptidoglycan (PGN), two derivatives of the bacterial cell envelope
(10, 14). In addition, the symbionts induce changes in the host cells
with which they directly associate (Fig. 1); specifically, they induce
a swelling of the crypt epithelial cells and an increase in the density
of their microvilli (10).
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In this symbiosis, the only known contribution of the bacteria is
luminescence (15), which is mediated by quorum signaling, a
cell–cell sensing mechanism by which beneficial and pathogenic
bacterial species coordinately control gene expression in a cell-
density-dependent manner (16). V. fischeri cells do not induce
luminescence until �8 h after inoculation. By then, the accumula-
tion of the second of two V. fischeri-produced quorum signals (17),
the 3-oxohexanoyl-L-homoserine lactone autoinducer (AI) mole-
cule, leads to the full induction of the lux operon, which encodes the
light-emitting enzyme subunits of luciferase (LuxA and LuxB) and
the AI synthase (LuxI) (18). The ability to produce both luciferase
and AI is critical to the symbiosis; mutants defective in either of
these factors fail to induce crypt cell swelling or to persist normally
in the light organ beyond 24 h. Interestingly, colonization by a luxA
(but not a luxI) mutant additionally fails to induce either proper
hemocyte trafficking or regression of the superficial epithelium
(19). This differential response may reflect that (i) the luxA mutant
(unlike the luxI) produces AI, and/or (ii) the luxI mutant (unlike the
luxA) still produces a small amount of luminescence (18). Thus, to
fully understand the mechanisms that trigger these developmental
events (Fig. 1), we must determine how each of these two conse-
quences of symbiotic colonization, luminescence and AI produc-
tion, differentially affects the host.

We hypothesized that the dramatic developmental events that
occur in response to colonization would be reflected in underlying
transcriptional changes in host light-organ tissues. The recent
construction of an E. scolopes light-organ-derived EST database,
consisting of a set of 13,962 unique sequences (20), led to the design
of a glass-slide microarray for the study of global changes in
host-gene expression during symbiosis. We used this microarray to
characterize and separate the host’s transcriptional response to the
presence of three components of the symbiosis: bacterial symbionts,
luminescence, and AI. Patterns of light-organ gene expression were
determined 18 h after inoculation of juvenile squid, when all of the
conspicuous symbiont-induced developmental programs have been
triggered, and the bacterial partners have fully colonized the organ
and are producing maximal levels of luminescence.

Results
Hierarchical Host Transcriptional Responses to Symbiont Colonization.
To reveal broad patterns of gene expression that result from
interaction with the symbiont, we analyzed eight individual com-
parisons of colonization treatments, as well as three comparisons of
larger groupings of general colonization conditions, or ‘‘grouped
conditions’’: with/without symbionts, with/without luminescence, or
with/without AI (Table 1). All comparisons were based on four
independent biological replicates of each colonization treatment
[see supporting information (SI) Text for details]. Two lines of
evidence support a hierarchy among the grouped conditions;
bacterial presence itself had the greatest effect, followed by sym-
biont light production, and then AI production. This evidence
includes: (i) the topology of a microarray condition tree (Fig. 2),
which was derived from the expression levels of 781 differentially
regulated genes in all individual comparisons of colonization treat-
ments; and (ii) the frequency and patterns of differential gene
regulation in individual and specific grouped conditions (Tables 1,
2, S1, and S2). In addition, the reliability of these microarray
expression results was confirmed by quantitative real-time PCR
(QRT-PCR) analysis (SI Text). Nine of the 10 genes analyzed were
differentially regulated in both the same direction and magnitude
as predicted from the array data (Table S3).

Analysis of the Condition Tree. To examine the overall clustering of
the gene expression data among treatments, we created a condition
tree (Fig. 2) based on the average expression values (n � 3) of the
781 unique differentially expressed transcripts in the individual
comparisons (Tables 1 and S4). The two aposymbiotic conditions
(Apo and Apo � AI) clustered separately from all of the symbiotic
conditions. They also clustered separately from each other, indi-
cating that the transcriptional profile is significantly affected by AI
addition, even in the absence of symbionts. The transcriptional
profiles of all symbiotic light organs clustered together. However,
organs not exposed to luminescence (i.e., animals colonized by the
luxA mutant) had expression profiles that clustered separately from
those that were exposed. Based on this indication of the impact of
luminescence, we predicted that the transcriptional profile derived
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Fig. 1. Features of early host development in the squid-vibrio symbiosis. The light-organ tissues undergo a series of symbiont-induced developmental events
(see text for details), here visualized by scanning electron microscopy (Upper) and confocal microscopy (Lower). After aggregating in host mucus, at 4 h,
GFP-labeled V. fischeri cells (green) enter host tissues (red). At 12 h, the symbionts induce the loss of the superficial ciliated epithelium that facilitates colonization,
a process that is complete by 96 h. By 18 h, the time when host transcriptional responses were characterized, bacteria fill the epithelium-lined crypts (red) and
are highly luminous. By 48 h, symbionts induce crypt-cell swelling, a phenotype that is not observed in colonizations by luxA and luxI mutants, and that correlates
with their inability to persist.
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from luxI � AI (bright luminescence) would more closely resemble
that of wild type (bright) than that of luxI (dim) (18). However, the
individual profiles of light organs colonized by V. fischeri producing
any luminescence (wild type, luxI, and luxI � AI) did not resolve
with high confidence (Fig. 2). Two conclusions arise from these
data: (i) even the low levels of light emission produced by the luxI
mutant are sufficient to trigger much of the host’s symbiotic
response to luminescence, and (ii) the presence of luminescence has
a greater influence on the transcriptional profile of the juvenile light
organ than does the presence or absence of AI.

Frequency and Patterns of Differential Gene Regulation. The relative
number (Table 1), as well as the fold change (Tables 2 and S2), of
differentially regulated transcripts among the grouped conditions

was also consistent with the dominance hierarchy of: the presence
of bacteria � luminescence � AI. This hierarchical relationship was
further supported by a three-way Venn diagram comparison, in
which we characterized the patterns of differential gene expression
during V. fischeri colonization with (i) both luminescence and AI
present (wild type vs. Apo), (ii) luminescence present but no AI
(wild type vs. luxI), and (iii) AI present but no luminescence (wild
type vs. luxA) (Fig. S1A and Table S5 A–G).

We also did two pair-wise comparisons to determine the
influence of colonization state on responses to AI. We first
compared {Apo vs. Apo � AI} with {luxI vs. luxI � AI} to assay
the effects of AI irrespective of colonization (Fig. S1B; Table S5
H–J). If the presence of the bacterial colonization were not
required for the light organ to respond to AI, we would expect
a similar result from these two comparisons. However, more than
twice the number of transcripts were differentially regulated
when AI was added in the presence of V. fischeri cells than in
their absence, and only one transcript, annotated as ‘‘unknown,’’
was shared. Therefore, the host tissue naturally responds to the
presence of AI only in the biologically relevant condition of the
presence of symbionts. This tissue response may work indirectly
through the activity of AI on another bacterial activity(s). The
second pair-wise comparison, {Apo vs. luxI} and {Apo � AI vs.

Table 1. Numbers of light-organ transcripts differentially regulated between conditions

Comparisons
Total number
of transcripts*

Number of transcripts differentially regulated � 2-fold

Total Up† Down† Known‡ Unknown/Hypo‡ No hits‡ Expression class§

Grouped conditions¶

Symbionts vs. no symbionts 132 70 33 37 42 8/8 12 N
Light vs. no light 27 19 15 4 9 5/2 3 P
AI vs. no AI 10 10 10 0 5 3/1 1 O

Individual conditions
Wild type vs. apo 462 262 141 121 145 45/31 41 A, B, D, E
Wild type vs. luxA 211 149 96 53 57 54/1 37 D, E, F, G
Wild type vs. luxI 131 99 50 49 37 36/0 26 B, C, E, F
Wild type vs. luxI � AI 24 24 9 15 8 2/12 2 Q
Apo vs. apo � AI 13 2 2 0 1 1/0 0 H
Apo vs. luxI 154 94 57 37 56 17/9 12 K, L
Apo � AI vs. luxI � AI 148 89 55 34 51 16/9 13 L, M
luxI vs. luxI � AI 32 16 11 5 5 1/5 5 I, J

*Transcripts significantly differentially regulated between conditions (see Methods); total number of unique transcripts for all grouped conditions, 145; total
number for all individual conditions, 781.

†Those transcripts up- or down-regulated �2-fold, calculated as the first condition over the second.
‡Known, related to a described gene; unknown/hypo, undescribed or hypothetical protein; no hits, no significant homology to the nonredundant database of
Genbank, as determined by BLASTX analysis.

§Letter designation indicates the expression class in Fig. S1 and/or Table S5.
¶Differences between conditions sharing the same category of exposure condition. �Symbiont� includes wild type, luxI, luxI � AI and luxA; �no symbiont� includes
apo and apo � AI; �light� includes wild type, luxI � AI; �no light� includes apo, apo � AI and luxA; �AI� includes wild type, apo � AI, luxI � AI and luxA; and, �no
AI� includes apo and luxI.

Fig. 2. Transcriptional profiles of light organs exposed to different coloni-
zation conditions. Juvenile squid were either left uninoculated (apo) or inoc-
ulated with wild-type, luxA, or luxI strains of V. fischeri, in the presence or
absence of added AI. The relative similarities of patterns of gene expression
under the different conditions were mapped by using change correlation
average linkage. Numbers at the nodes represent percent confidence from
bootstrapping analysis (n � 1,000). The relative levels of luminescence pro-
duced in the light organs under each condition are also indicated.

Table 2. Transcripts regulated by all three conditions

Annotation of transcript

Fold change*

S/NS L/NL A/NA

Require symbionts with luminescence and AI
LPS-binding protein 8.6 4.4 3.4
Peptidoglycan recognition protein 1 7.3 4.7 2.2
Galaxin-1 (unknown function) 4.8 3.3 2.6
Galaxin-2 (unknown function) 4.1 2.9 2.2
Tetraspanin 3 (membrane trafficking) 2.2 1.9 1.5

Complete list in Table S2, including transcripts regulated by only one or two
of the conditions
*Calculated as the first condition relative to the second; S/NS, symbionts vs. no
symbionts; L/NL, light vs. no light; or A/NA, AI vs. no AI (e.g., Table 1).
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luxI � AI} (Fig. S1C; Table S5 K–M) allowed an analysis of the
effect of AI on the light organ’s transcriptional response to the
presence (or absence) of a bacterial colonization. There was an
80% overlap in the identity of the differentially regulated genes,
reinforcing the notion that the presence of the bacteria is the
most significant driving force in the alteration of gene expression
during symbiosis. We were unable to perform a similarly detailed
analysis of the role of luminescence, because it was not techni-
cally feasible to introduce light to the crypt epithelium in the
absence of symbionts.

Regulation of Specific Genes and Response Pathways. The presence
of the symbiont and the production of luminescence were expres-
sion classes with patterns of gene regulation of particular interest.
Approximately one-third of the transcripts regulated solely by the
presence of symbionts were either directly associated with signal-
transduction pathways (13%) or were transcription factors (20%)
(Table S5A). Of special significance was the differential regulation
of transcripts encoding proteins typically associated with the re-
sponses of animals to bacterial infection. These proteins include
receptors and other components of immune-related response sys-
tems, such as the NF-kappaB and MAP-kinase pathways (21), as
well as components of the Kruppel-like factor regulatory cascade
(22). For example, the presence of symbionts up-regulates genes
encoding a putative host LPS-binding protein [E. scolopes LBP or
EsLBP (20)] and PGN-recognition proteins (EsPGRP1 and Es-
PGRP2), as well as elements of both the NF-kappaB pathway
(I-kappaB, I-kappaB kinase-gamma, and I-kappaB-zeta variant 3)
and its associated proteasome-ubiquitin pathway (e.g., proteasome
subunits, ubiquitin ligases, cullin-3). Because derivatives of LPS and
PGN act as symbiont-derived morphogens that trigger host devel-
opment (14), it is not surprising that expression of the putative
receptors for these ligands, as well as components of their down-
stream response pathways, are regulated by the presence of bacte-
rial colonization. To investigate whether such differential gene
regulation would correspond to changes in encoded-protein pro-
duction, we localized EsLBP within juvenile tissues in response to
symbiont colonization (Fig. 3). The pattern of cross-reactivity of
antibodies to this protein was markedly different between 18-h apo-
and symbiotic animals in two ways. First, under either condition,
antibody labeling occurred along the apical surfaces of the crypt
epithelia; however, in symbiotic animals, strong labeling was also
present within the crypt spaces that housed the colonizing symbi-
onts. Second, the overall amount of labeling in the tissues was

greater in symbiotic animals, correlating to the increased transcrip-
tion of EsLBP (Tables 2 and S3).

In contrast to the above-described patterns of gene up-
regulation, many transcripts encoding orthologs of proteins in-
volved in the synthesis and maintenance of ciliated surfaces (e.g.,
orthologs of dynein isoforms and of rootletin) were down-regulated
in response to the presence of symbionts. This decrease in transcript
level occurs concomitantly with a major developmental event: the
bacteria-triggered loss of the light organ’s superficial ciliated epi-
thelium (10), a structure that plays an important role in the initial
stages of colonization. Interestingly, several transcripts that are
likely to encode proteins associated with the visual transduction
cascade (e.g., orthologs of the eye-specific retinal-binding protein,
guanylate cyclase-1, and guanylate cyclase activator 1A) were also
differentially regulated. The expression of these genes, as well as
other orthologs encoding proteins of visual transduction, in the
tissues of the juvenile light organ was first reported in the recent
analyses of the E. scolopes EST database (20) and may indicate a
mechanism by which the light organ perceives the level of bacterial
luminescence. These microarray results suggest that the expression
of the visual transduction transcripts is a response to the presence
of symbionts and not a direct response to their luminescence,
because the regulation was similar between juveniles colonized by
the wild type and the nonluminous luxA mutant.

In addition to these effects of the presence of the symbionts, the
Venn diagram analyses indicated that luminescence specifically
induces the differential regulation of a number of host genes (Fig.
S1A). One transcript, encoding the oxygen-carrying blood pigment
hemocyanin (23), exhibited a remarkable pattern of differential
regulation that suggests a clear significance to the symbiosis. The
levels of hemocyanin transcript appear the same in both aposym-
biotic animals and animals colonized by wild-type V. fischeri (Table
S5G); however, animals colonized by the luxA mutant showed a
dramatic down-regulation in hemocyanin transcript level. These
data suggest that, when colonized by a nonluminous mutant of V.
fischeri, the host responds by reducing the transport, and perhaps
availability, of oxygen in the light organ, thereby sanctioning a
defective symbiont (18).

Shared Symbiont-Induced Genes Among Animal Hosts. Whereas
global gene regulation in the host during pathogenesis has been
extensively documented (reviewed in ref. 24), there are only a few
studies of the responses of animal tissues to interactions with
beneficial microbial partners (5, 13, 25, 26). Gordon and coworkers
(5) have previously determined that 59 differentially regulated
transcripts of known annotation are shared between two distantly
related vertebrates, zebrafish and mouse, in studies of the response
of the gut epithelia to colonization by their normal microbiota. Of
these 59 transcripts, the EST database of the squid light organ
contains 45 genes that are either orthologs or in a shared gene
family (Table S6). Our BLASTX analyses suggest that the other 14
genes are specific to vertebrates and their relatives. Interestingly, 16
of the 45 transcripts (5 orthologs and 11 in a shared gene family)
were also differentially regulated among the 462 transcripts ex-
pressed differently between symbiotic and aposymbiotic light or-
gans (Tables S4, S6, and S7). This differential regulation of the
shared genes is highly significant (P � 3.3 � 10�7 by Fisher’s Exact
test; P � 1.2 � 10�10 by �2 test) (SI Text). Recent studies of the host
transcriptome changes in Yersinia enterocolitica pathogenesis (27)
have similarly demonstrated differential regulation of several of
these genes (Table S7).

Discussion
Host Transcriptional Responses to Colonization by Wild-Type, luxA,
and luxI Symbionts. Unique to this study is the comparison of host
responses to either wild-type symbionts or isogenic symbionts
defective in characters known to be essential for a persistent
symbiosis, i.e., light production (luxA) and AI quorum sensing

20 m
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Fig. 3. Localization of EsLBP in juvenile light-organ crypts using confocal
immunocytochemistry (ICC) (36). (A) In aposymbiotic animals, FITC-labeled
secondary antibodies localized EsLBP (green) to the apical surfaces of the crypt
epithelia. (B) In symbiotic animals, the epithelia remained labeled; however,
a large amount of labeling had appeared in the crypt spaces as well. The
staining was not the result of V. fischeri cells directly binding the EsLBP
antibody. (Inset) When these bacteria (�1 �m), counterstained with pro-
pidium iodide (red; Left of Inset), were treated with the EsLBP antibody, there
was no binding (Right). (C) Preimmune controls of both aposymbiotic and
symbiotic crypts showed no nonspecific staining. In all images, counterstain-
ing of animal tissues included TOTO3 (blue), which labels nucleic acids; and
rhodamine phalloidin (red), which labels filamentous actin. Numbering indi-
cates the two largest of the three crypts in each image; ‘‘is’’ indicates the ink
sac. See details in SI Text.

11326 � www.pnas.org�cgi�doi�10.1073�pnas.0802369105 Chun et al.

http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/content/vol0/issue2008/images/data/0802369105/DCSupplemental/SD2.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0802369105/DCSupplemental/SD2.xls
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=ST5
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/content/vol0/issue2008/images/data/0802369105/DCSupplemental/SD2.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0802369105/DCSupplemental/SD2.xls
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=ST6
http://www.pnas.org/content/vol0/issue2008/images/data/0802369105/DCSupplemental/SD1.xls
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=ST6
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=ST7
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=ST7
http://www.pnas.org/cgi/data/0802369105/DCSupplemental/Supplemental_PDF#nameddest=STXT


(luxI) (18). The differences in induction of host transcriptional
responses shared by these two mutants compared to wild-type
symbionts (Fig. S1) are likely to reflect those genes involved in
regulating events like crypt cell swelling and bacterial persistence,
phenotypes that are defective in both these mutants (18). In
contrast, the greater extent of host differential gene regulation in
the luxA compared to the luxI mutant (Table S1) is likely to reflect
host phenotypes like hemocyte trafficking and regression of the
superficial epithelial field that are defective only in the luxA mutant
(19). The different timing of the onset of these host phenotypes
(Fig. 1) may correlate to the presence or absence of luminescence
in the two mutants (Fig. 2).

How might differences in the host’s transcriptional response to
the luxA mutant underlie the inability of this strain to trigger normal
light-organ morphogenesis? The absence of symbiont luminescence
results in a 4- to 5-fold lower level of transcription of a putative
LPS-binding protein and a PGN-recognition protein (Table 2).
Further research will be required to demonstrate unequivocally that
these specific proteins are the receptors for derivatives of V. fischeri
LPS and PGN. Nevertheless, they are orthologs of receptors that
sense these bacterial molecules, which are morphogens that signal
light-organ development (10, 14). Thus, symbiont light production,
which occurs at low to normal levels in luxI and wild-type strains
(Fig. 2), appears to be coupled to the induction of receptors for
these symbiont signals. These signals would then mediate morpho-
genesis of the epithelial surface. Such a coupling would provide a
feed-forward response to the developing symbiosis. Also, nonlu-
minous symbionts are delayed in triggering light-organ morpho-
genesis and may be eliminated before they can mediate the com-
plete regression of host tissues that facilitate colonization (10). As
such, the animal would remain receptive to inoculation by a
subsequent V. fischeri strain that is luminescent. Interestingly, the
small amount of luminescence of the luxI mutant seems to be
sufficient to induce aspects of normal early development (e.g.,
hemocyte trafficking) but does not rescue the persistence defect,
which appears later (18). Whether the second V. fischeri AI (17)
also contributes to the triggering of these (or other) events in host
development remains to be determined.

Does the host respond to symbiont light emission itself or to the
lowering of the ambient oxygen concentration resulting from the
strong oxygenase activity of the luminescent reaction? One hypoth-
esis is that sensory proteins located in the organ (unpublished data)
and encoded by orthologs of genes of the visual transduction
cascade (20) are involved in the perception of bacterial lumines-
cence, i.e., a direct mechanism to detect the presence of nonlumi-
nous ‘‘cheaters’’ (28). Alternatively, a differential regulation of host
genes involved in oxygen utilization might indicate that the animal
responds to the marked difference in oxygen utilization by wild-type
and luxA symbionts (28). In regard to the latter hypothesis, it is
interesting to note that a dramatic down-regulation of the gene
encoding the host’s blood pigment, hemocyanin, occurs during
colonization by the luxA mutant (Tables S3 and S3). Thus, some
portions of the host’s responses to luxA symbionts may reflect a
failure to provide normal oxygen levels to the light organ, affecting
both tissue development and the bacterial population.

The transcriptional response to AI addition, in the presence or
absence of bacterial symbionts, provides evidence that host tissues
react differently to this signal molecule depending on whether they
are colonized. These data reinforce the idea that the presentation
of chemical signals and other effectors in the absence of the natural
bacteria–host context can lead to different and potentially mislead-
ing molecular responses (27). In the squid-vibrio system, the host’s
response to AI is quite limited when compared with that evoked by
the presence of either the bacteria themselves or their light pro-
duction (Table S1). Although the small number of genes that are
directly regulated by AI may play an important role, this study
suggests that quorum signaling is a conversation held principally
among the bacterial symbionts and the host’s response appears

largely to be mediated indirectly, i.e., through the effects of AI on
the activities of the colonizing bacteria, such as luminescence.
Because little overlap was observed between the genes regulated by
luminescence and those regulated by AI (Figs. 2 and S1A), the
host’s perception of a defect in the luxI strain is likely to be
independent of its attenuated level of light production. Instead, we
propose that the differential between the host’s response to wild-
type and luxI symbionts is due to the activities of other, nonlux, V.
fischeri genes that are regulated by AI (ref. 29; data not shown).

Similar Transcriptional Responses to Bacterial Symbionts Among
Different Animal Hosts. The magnitude of the differential transcrip-
tional regulation (i.e., hundreds of genes) that characterizes the
interaction of E. scolopes with its symbionts is similar to that
reported in other microarray studies of both pathogenic and
beneficial animal–bacterial interactions (e.g., refs. 5, 13, 27). Thus,
the transcriptional studies presented here not only provide a rich
dataset that will inform further characterization of the squid-vibrio
symbiosis but also add to a growing database defining the genomic
responses of host organisms to their bacterial associates, regardless
of the nature of the relationship.

The host squid’s transcriptional responses identified here offer an
opportunity to determine bacteria-induced changes in gene expres-
sion that are either specific to, or conserved across, different taxa
of the animal kingdom. These shared changes in gene expression
and possible functional pathways may represent a core set of host
responses to the extracellular colonization of the apical surfaces of
polarized epithelia. For example, a closer study of the 16 differen-
tially regulated genes shared in the mouse, zebrafish, and squid
symbioses reveal several associated with the immune response,
including components involved in the NF-kappaB and oxidative
stress pathways (Table S7). These data support the idea that this
response, rather than being entirely devoted to self/nonself recog-
nition, is a principal mechanism by which host animals control
responses to bacteria, whether they are persistent beneficial part-
ners or harmful pathogens (30, 31). In addition, an examination of
the annotated portion of the total 781 differentially regulated
transcripts (Table S4) suggests a pivotal role for three transcription
factors that may work alone or coordinately in the control of
epithelium–bacteria interactions: NF-kappaB, the ETS family, and
the Kruppel-like family. ELF3, an ETS-family transcription factor
(Table S2), is specific to epithelial cells, and mutations in this gene
have been implicated in abnormal development of intestinal epi-
thelia and in cancer (32, 33). Relevant here is that a recent study of
host infection by uropathogenic Escherichia coli (UPEC) revealed
that the gene encoding ELF3 is differentially regulated by the
pathogen and suggested a link between epithelial differentiation
and the proinflammatory response (34). Similarly, Kruppel-like
transcription factors (Table S4) are also implicated in host re-
sponses, often mediating bacteria-induced changes in the host
cytoskeleton (22, 34). The observation that these three transcription
factors are differentially regulated in a wide variety of bacterial
associations suggests they and their targets may be essential players
in the control of epithelial colonization, regardless of the type of
symbiosis.

As in our study, most of the attention to differentially regulated
transcripts has in the past focused on genes whose functions can be
inferred from annotated orthologs. However, as microarray-based
transcriptional information becomes available for other symbiotic
systems, a comparison of these databases may reveal certain
‘‘hypothetical’’ genes that commonly respond to bacterial coloni-
zation. Such an analysis could identify novel host transcripts that
might play a conserved role in the maintenance of beneficial
interactions with bacteria.

This study of the patterns of host transcriptional responses in the
squid-vibrio symbiosis has produced a wealth of hypothesis-
generating information. The data present a ‘‘snapshot’’ view of the
host transcriptome at 18 h postinoculation, a critical time in the
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trajectory of symbiotic development, and serve as a foundation for
future characterizations of the events that precede and follow. As
in most other such studies, these results represent an averaging of
the transcriptional changes across a set of tissues. A more precise
understanding of these changes at the tissue and cellular level will
come from the localization of the expression of specific genes and
gene-products by in situ hybridization and immunocytochemistry
(e.g., refs. 35, 36). Such approaches may, for example, reveal that
both the crypt epithelia, which are interacting directly with the
symbionts, and the superficial epithelia, which are induced to
regress (Fig. 1), exhibit significant differences in their patterns of
gene expression that reflect the distinct developmental fates of
these two tissues.

Whereas by 2005, dozens of microarray studies had been per-
formed to describe host responses to pathogens (24), to date only
a few have characterized transcriptional regulation in the interac-
tions of animals with their normal microbiota. Thus, an under-
standing of genome-wide responses between animals and their
coevolved microbial partners is still in its infancy. With the growing
awareness that such associations are the most prevalent type of
bacteria-host interaction, similar analyses of other systems promises
an exciting horizon for the study of how animals and bacteria form
and maintain long-term, mutually beneficial alliances.

Methods
Squid Colonization Experiments. Juvenile animals were collected within minutes
of hatching and transferred to glass vials containing 2 ml of Hawaiian offshore
seawater (HOSW). HOSW contains a natural assemblage of many kinds of marine
bacteria, but has an insufficient number of V. fischeri to initiate light-organ

colonization (10). A subset of juveniles was provided with no V. fischeri inoculum,
i.e., were maintained aposymbiotic (apo), whereas the rest were made symbiotic
by the addition of either wild-type V. fischeri ES114 (11), or luxI or luxA mutants
of this strain (18). In all cases, symbiosis was initiated by placing the juveniles in
vials containing 1,000 cells of the inoculating strain per milliliter of HOSW. After
6h,allof thesquidweretransferredtofreshvials containing2mlofuninoculated
HOSW; in some treatments, the vials contained an addition of 5 �M synthetic AI
(Sigma-Aldrich).

Preparation of Light-Organ Tissues for Microarray Analyses. Six experimental
treatments of juvenile animals were performed for the microarray matrix: un-
colonized(Apo);uncolonized,butsupplementedwithAI (Apo�AI); colonizedby
wild-type V. fischeri (wild type); colonized by a mutant defective in luciferase
synthesis (luxA); colonized by a mutant defective in AI synthesis (luxI); and,
colonized by the luxI mutant, but supplemented with AI (luxI � AI) (Figs. 2 and S2
and S3). At 18 h postinoculation, animals were anesthetized in 2% ethanol in
HOSW, and the light organs were removed into RNAlater (Ambion Biosystems).
See SI Text for details.

Microarray Hybridizations and Analyses. Spotted glass microarrays (GLP3825)
were prepared from a nonredundant cDNA library containing 13,962 sequences,
obtained from 0- to 48-h postinoculation juvenile squid light organs as described
(20). Each spotted-array experiment was performed with 1 �g of total RNA. In
addition to three biological replicates of the six treatment conditions described
above, dye-swap replicates and two on-chip replicates (for a total of at least four
technical replicates/treatment) were performed for each treatment condition.
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Squid Colonization Experiments. The breeding stock of adult Eu-
prymna scolopes was maintained and bred under laboratory
conditions as previously described (1). Because the juveniles
used in this study were the progeny of a number of field-caught
animals, and were hatched over the course of two weeks, we
sought to minimize the effects of natural genetic variation. To
achieve this aim, the animals that hatched on a given day were
equally divided among the six treatments. As a result of this
strategy, the pooled RNA from a given treatment was derived
from six to eight separate clutches, laid by three to four different
field-caught females.

Four biological replicates (i.e., separate light-organ RNA
extractions of independently collected light organs, each con-
taining 90 organs for each of the six colonization treatments)
were performed on the same day with the same reagents. Thus,
a total of 540 organs were sampled for each of the four biological
replicates.

The newly hatched juvenile animals were colonized by expo-
sure to either wild-type, luxA or luxI strains of Vibrio fischeri. The
luxA mutant has a deletion in a gene encoding bacterial lucif-
erase, and is completely defective in bioluminescence, while the
luxI mutant is unable to synthesize 3-oxo-hexanoyl-L-
homoserine lactone (AI), an autoinducer of luciferase. The luxI
mutant makes only a reduced level of luminescence (2). Because
AI spontaneously inactivates in the alkaline conditions of sea-
water (3), we determined the rate of loss under our experimental
conditions (Fig. S2). The resulting data indicated that by sup-
plementing the seawater with 6 �M AI, the concentration of this
luminescence inducer remained above 100 nM, the approximate
level found in light organs colonized by wild-type cells (4),
throughout the incubation (i.e., from 6 to18 h post inoculation).
The efficacy of this AI-addition protocol was additionally con-
firmed by the restoration of the luminescence of animals colo-
nized by the luxI mutant to a level close to that characteristic of
colonization by wild-type V. fischeri (Fig. S3).

Microarray Hybridizations. The spotted microarray contained
13,962 cDNAs (5) applied two times on each glass slide, for a
total of 27,924 sample spots (GEO accession: Platform
GLP3825; I. V. Koroleva, B. J. Brown, E. Snir, H. Almabrazi,
T. L. Casavant, M. B. Soares, and M. McFall-Ngai; Squid EST
30K cDNA array; public on June 2, 2006). The microarray slides
had five positive-control spikes prepared using sequences iso-
lated from Xenopus leavis, Anopheles gambiae, Schistosoma
mansoni, and Apis mellifera (6–8). The chosen sequences did not
cross-hybridize with any of the cDNAs from the E. scolopes light
organ EST database (data not shown). Negative controls were
spots of (i) buffer alone, (ii) polyA oligonucleotides, or (iii) no
template.

Pools of light organs, obtained from 90 juvenile squid sub-
jected to the same treatment, were homogenized (Polytron
1200C, Brinkmann Instruments Inc.), and total RNA was ex-
tracted using the MasterPure Purification Kit (Epicentre Bio-
technologies), followed by the RNeasy Mini Kit with on-column
DNase digestion (Qiagen Inc.). The resulting RNA sample was
concentrated with a Microcon 30 (Millipore). The concentration
and quality of the samples were determined spectrophotometri-
cally, and their purity was estimated by agarose gel electrophore-
sis. Each biological replicate of 90 light organs contained on
average 20 �g of total RNA, and only samples with a 260/280 nm
optical ratio of between 1.9 and 2.0 were used. Visual inspection

revealed two distinct ribosomal bands and no evidence of
degradation products (data not shown). Total RNA samples
were processed and indirectly labeled with 3DNA 350HS Ex-
pression Array Detection Kit (Genisphere). Slides were hybrid-
ized overnight, and washed using a Lucidia SlidePro hybridiza-
tion station (GE Healthcare). The arrays were then scanned
using GenePix 4000B (Molecular Devices). The raw data were
stored in the database, and used for subsequent analysis.

On each slide we used a runoff reference, which is a mixture
of vector-primed transcription products derived from an equal
mixture of the 13,962 E. scolopes cDNA clones, labeled with the
same protocol as the experimental samples (see below). This
approach allowed us to compare each experimental condition to
a single standardized reference, and to use a robust normaliza-
tion method, the two-way semilinear model (TW-SLM) (9), that
has been specifically optimized to identify genes in our experi-
mental design. Each spotted glass-slide microarray was hybrid-
ized with two samples: (i) the experimental cDNA; and, (ii) the
run-off reference, using a procedure described previously (10)
except that sheared E. scolopes genomic DNA was used to block
repetitive elements. This genomic DNA was isolated from a
freshly dissected adult squid using the Blood and Cell Culture
DNA Maxi Kit (Qiagen Inc.). As a control for technical variation
inherent in the fluorescent-probe chemistry, the Cy3 and Cy5
labeling of the experimental sample and the run-off reference
were alternated in at least two slides per replicate (i.e., three
replicates per condition) in each of the six conditions. After
normalization of the arrays’ hybridization signals, Volcano plot
analyses and ANOVA (see below) were performed on data from
the six treatment conditions. These analyses identified 781 RNA
transcripts/genes that were significantly differentially regulated
between the conditions (Table S4).

Microarray Significance Analysis. To determine the confidence
level of the signals from the hybridized glass-slide microarrays,
we first accounted for the dye-swap technical replication, fol-
lowed by a further independent normalization using two differ-
ent techniques: per spot per chip (PSPC) and two-way semilinear
model (TW-SLM) (9). All statistics described below were per-
formed using GeneSpring GX software (Agilent Technologies).
To eliminate systematic error due to either inconsistency of
replicates or intensity levels below a reliable range, both raw and
control data were filtered with 50% confidence according to the
cross-gene error model for normalization conditions, both with
and without the consideration of spike controls (11). The
resulting 7,503 transcripts were analyzed using two statistical
methods: (i) Volcano plot analysis with a fold-change threshold
of 2.0 and a P value �0.05; and (ii) analysis of variance
(ANOVA) with a P value �0.05, using Benjamini and Hochberg
false discovery rate (FDR) multiple-testing correction (12)
followed by Tukey’s pair-wise comparison (Table S1).

To assess whether the hybridization signals that had been
detected were specific to cDNA spots, we compared the mean
spot intensity (meanS) with the mean of the median local
background intensity (meanB) for each slide. Each spot was
given a reliability score ranging from 0 to 4 (0 � meanS �
meanB; one point is given for each standard deviation (SD)
greater than the background, and 4 � meanS � meanB � 3SD).
Scores for all replicates were averaged. Spots with scores of 3 and
4 are considered highly reliable. Of the 13,962 sequences tested
on the microarray, 12,616 sequences (90.4%) had an average
score of 4 and 1130 sequences (8.1%) had an average score of
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3 (Table S4). Approximately, 98% (765 of 781) transcripts found
to be significantly differentially regulated in at least one pair-
wise comparison of the microarray analyses had an average
reliability score of 3 or 4.

Quantitative AI Assay. To determine the amount of biologically
active AI predicted to be remaining in HOSW (pH 8.2 at 23°C)
throughout the 18-h incubation of animals to be used in the
microarray experiment, we used a quantitative bioassay with
Escherichia coli (pHV200I-) as described (3). Levels of AI were
monitored over a 12 h period in either the presence or absence
of uncolonized juvenile squid. Synthetic AI (Sigma-Aldrich) was
resuspended as a solution and stored in acidified ethyl acetate
(EtAc). Immediately before use, the AI solution was dispensed
to a glass vial, dried under nitrogen gas and dissolved in 2 ml of
HOSW to a final concentration of 6 �M. The pH and temper-
ature of the water was measured at the start and end of each
experiment. At the onset and at various times throughout the
experiment, 6 �l of the HOSW containing AI were removed
from the sample and added to 100 �l of EtAc. These samples
were stored in airtight glass vials at -20°C before bioassay (3).

Bioluminescence Colonization Assay. The minimum concentration
of exogenously added AI necessary to complement the lumi-
nescence of the V. fischeri luxI mutant to wild-type levels was
determined as follows. Sets of 12 newly hatched squids were
placed in HOSW inoculated with either the wild type or the luxI
mutant strain of V. fischeri. After 6 h, the animals were trans-
ferred to fresh HOSW containing different concentrations of
AI, and the level of squid bioluminescence that subsequently
developed was monitored for 28 h (Fig. S3) using an automated
photometer (13). Data presented are representative of two
independent trials, and indicated that AI added to a concentra-
tion of 200 nM would induce and maintain the luminescence of
the luxI mutant at nearly wild-type levels for at least 12 addi-
tional hours.

Quantitative Real-Time PCR. To verify the differential expression of
a subset of genes identified in the microarray analyses, QRT-
PCR was performed on selected transcripts (Table S3). To
ensure that differential gene regulation identified in the mi-
croarray consistently occurs (i.e., irrespective of the cohort of
animals or the reagent lot), the RNA for QRT-PCR analysis was
derived from light organs that had been isolated from a fourth
cohort of animals at the same time as the three sets of samples
collected for the microarrays. Actin-specific primers were used
as a control (Table S3) because previous work (14), as well as this
study (data not shown), indicated that the levels of actin tran-
script do not change during the first few days of light-organ
development. Standard curves were created using a 10-fold
cDNA dilution series with each primer set. The Pfaffl method
(15) was used to calculate the fold-change in transcript abun-
dance between each condition. The efficiencies of all QRT-PCR
reactions were between 90% and 105%, although the range
between any two reactions used to determine fold-change was
�10%. All reactions used to determine fold-change were con-
structed from the same set of cDNA dilutions.

QRT-PCR was performed using iQSYBR Green Supermix in an
iCycler Thermal Cycler (Bio-Rad Laboratories). Gene-specific
primers were designed to create a product between 83 and 148 bp
(Table S3), and amplification was performed under the following
conditions: 95°C for 5 min, followed by 50 cycles of 95°C for 15 sec,
a specific annealing temperature (Table S3) for 15 sec, and 72°C for
15 sec. Each reaction was performed in triplicate and contained 0.2
�M primers and 3.0 mM MgCl2. To determine whether a single
amplicon resulted from this PCR, the presence of only one optimal
dissociation temperature was assayed by incrementally increasing
the temperature every 10 sec from 60 to 89.5°C.

Antibody Production and Immunocytochemistry with Antibodies to
EsLBP. For the production of an antibody to EsLBP, we analyzed
the derived amino acid sequence of the open-reading frame of
the transcript to identify a peptide region of high antigenicity,
surface probably, and hydrophilicity. The resulting candidate, a
20 amino acid peptide (DNKTDCNGEQDGRHECENSQ), was
conjugated to bovine gamma globulin and injected intramuscu-
larly into chickens for production of polyclonal hen-egg anti-
bodies. In addition, before injection with the antigen, eggs were
collected for the preimmune controls. Antibodies were concen-
trated by polyethylene-glycol precipitation from both the eggs of
preimmunized and immunized hens. The EsLBP antibody was
characterized by western-blot analysis, which showed that the
antibody recognizes a single peptide at the molecular mass
predicted for the derived amino acid sequence corresponding to
the gene encoding the protein.

Immunocytochemistry (ICC) was performed as described
(14). Briefly, juvenile squid were anesthetized in 2% ethanol in
seawater, and fixed overnight at 4°C in 4% paraformaldehyde in
marine PBS (mPBS) consisting of 50 mM sodium phosphate
buffer with 0.45 M NaCl, pH 7.4. Animals were then rinsed 4
times for 30 min in mPBS. The samples were then permeabolized
for 2 days at 4°C in 1 ml of 1% Triton X-100 in mPBS with
mixing. They were then blocked overnight at 4°C in a solution of
1% Triton X-100, 2% goat serum, and 0.5% BSA in mPBS. The
samples were incubated with 1:1000 dilution of the anti-EsLBP
polyclonal antibody in blocking solution for two weeks at 4°C.
Samples were then rinsed 4 times for 1 h in 1% Triton X-100 in
mPBS, and incubated overnight in blocking solution at 4°C.
Fluorescein isothiocyanate (FITC)-conjugated to goat anti-
chicken secondary antibody (Jackson Immunoresearch) was
added at a 1:250 dilution to fresh blocking solution containing
a1:2500 dilution of a rhodamine phalloidin counterstain, which
labels filamentous actin, and the samples were incubated in the
dark overnight at 4°C. Samples were rinsed 4 times at 30 min in
1% Triton X-100 in mPBS, followed by two final rinses in mPBS.
The tissues were then counterstained with the nucleic acid
TOTO-3 (Invitrogen, Inc.) following the manufacturer’s instruc-
tions. Samples were then mounted on glass slides in Vectashield
(Vector Laboratories), a mounting medium that retards photo-
bleaching. Preimmune chicken antibodies (at a dilution of
1:1,000) were used as a control for non-specific binding of
chicken antibodies to host tissues. To determine whether the
EsLBP antibody adheres non-specifically to bacteria, we treated
culture-grown cells of V. fischeri to the above protocol with both
preimmune and immune hen-egg antibodies. The cells were then
counterstained with 500 nM propidium iodide. All confocal
experiments were performed on a Zeiss LSM 510 system.

Statistical Treatment of Comparisons with Mouse and Zebrafish
Microarray Data. To determine whether there was a significance
to the overlap between symbiosis-induced genes in the vertebrate
and the squid expression studies, we calculated the probability
that the 16-gene overlap in these studies could have occurred by
chance. Specifically, the question was: Given that 462 of the 7503
expressed squid genes vary significantly between the symbiotic
and the aposymbiotic conditions, what is the likelihood of
observing 16 symbiosis-expressed squid genes among the 45 total
genes shared between the squid library and the subset of
vertebrate genes that are differentially expressed by interaction
with the normal microbiota? To determine this likelihood, we
applied both the Fisher’s Exact test and the �2 test; because one
specific gene set was analyzed, a correction for multiple testing
was not needed. The finding that 16 of 45 genes are shared in the
two comparisons showed high levels of significance by both
analyses (Fisher’s Exact test, P � 3.3 � 10�7; �2, P � 1.2 �
10�10).
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Wild type vs. Apo

A: 206
(113)

B: 15
(8)

C: 71
(23)

D: 20
(11)

E: 4
(4) F: 5

(1)

G: 113
(37)

Wild type vs. luxA

Wild type vs. luxI

Number of light-organ transcripts regulated in response to:

  A – the presence of symbionts, regardless of light or AI
  B – AI, regardless of symbionts
  C – AI, in the presence of symbionts
  D – light, regardless of symbionts
  E – AI or light, regardless of symbionts
  F – AI or light, in the presence of symbionts
  G – light, in the presence of symbionts

  H -- added AI, in the absence of luxI symbionts
  I -- added AI, regardless of light or luxI symbionts
  J -- added AI, in the presence of luxI symbionts

  K -- the presence of luxI symbionts, in the absence of AI
  L -- the presence of luxI symbionts, regardless of AI
  M -- the presence of luxI symbionts, in the presence of added AI

H: 1
(1)

I: 1
(0)

J: 15
(5)

K: 11
(6)

L: 60
(33)

M: 6
(1)

Apo vs. Apo + AI luxI vs. luxI + AI

Apo vs. luxI Apo + AI vs. luxI + AI

A

B

C

Fig. S1. Venn diagrams summarizing transcriptional responses of the light organ to (A) colonization by symbionts that either do or do not produce light or
AI, and (B and C) colonization by the luxI mutant in the presence or absence of added AI. The responses defined by each quadrant (expression classes A-M) are
listed. The numbers of total transcripts, as well as those with known annotations (in parentheses), that are differentially regulated �2 fold in all of the relevant
comparisons are given.
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Fig. S2. Rate of spontaneous degradation of AI in seawater. AI concentration, as determined by bioassay (see SI Text) decreased linearly when synthetic AI (6
�M) was added to HOSW. Data are means of triplicate samples from three independent trials. Similar results were found when aposymbiotic squid were either
absent (closed circles) or present (open squares) in the HOSW. Rates of degradation, calculated for these two conditions by linear regression, are indicated by
the solid and dotted lines, respectively.
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Fig. S3. Complementation of the symbiotic luminescence of a V. fischeri luxI mutant by the addition of synthetic AI. Sets of 12 newly hatched juvenile squid
were placed in HOSW inoculated with either V. fischeri wild type (diamonds) or a luxI mutant strain (circles). After 6 h, the animals were transferred to
uninoculated HOSW to which different concentrations of synthetic AI were added, and the development of symbiotic luminescence was followed. The
luminescence level was determined every hour and averaged over the sets. Data shown represent the results of one of two independent trials, both of which
showed the same trend. The time (18 h postinoculation) at which animals were sampled for the microarray experiments (see SI Text) is indicated by the vertical
dashed line. Luminescence of aposymbiotic (uninoculated) animals, and animals inoculated with the luxI mutant in the absence of added AI, remained below
the maximum level of background light (dotted line). The small increase in background luminescence observed between 10 and 22 h was due to an instrumental
light leak during the daily 12-h period that the room lights were on (the animal’s ‘‘day’’). More sensitive measurements indicated that the luxI mutant (without
AI) produced bioluminescence at �0.1% of wild-type levels (ref. 2 and data not shown).
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Table S1. Summary of ranges for light-organ transcript differentially regulated under different conditions

Comparisons*
Total number
of transcripts†

Range of fold-changes of differentially regulated transcripts‡

Expression class§Known Unknown/Hypo No hits

Category conditions
Symbiont vs. no symbiont 132 8.6 – (�3.7) 9.4 – (�3.4) 2.8 – (�5.0) N
Light vs. no light 27 4.7 – (�1.8) 4.9 – (�2.3) 2.3 – (�2.5) P
AI vs. no AI 10 3.4 – 1.5 2.6 – 1.5 n.a.¶ O

Individual conditions
Wild type vs. apo 462 130 – (�20) 29 – (�13) 100 – (�10) A, B, D, E
Wild type vs. luxA 211 69 – (�48) 64 – (�27) 100 – (�10) D, E, F, G
Wild type vs. luxI 131 21 – (�25) 54 – (�180) 8.9 – (�37) B, C, E, F
Wild type vs. luxI � AI 24 11 – (�7.1) 12 – (�50) 4.2 – (�2.3) Q
Apo vs. apo � AI 13 2.4 27 n.a. H
Apo vs. luxI 154 3.5 – (�33) 4.3 – (�25) 3.6 – (�20) K, L
Apo � AI vs. luxI � AI 148 4.5 – (�10) 3.3 – (�4.8) 20 – (�3.1) L, M
luxI vs. luxI � AI 32 3.4 – (�11) 26 – (�8.3) 24 – (�9.1) I, J

*Differences between conditions sharing the same category of exposure condition. ‘‘Symbiont’’ includes wild type, luxI, luxI � AI, and luxA; ‘‘no symbiont’’
includes apo and apo � AI; ‘‘light’’ includes wild type and luxI � AI; ‘‘no light’’ includes apo, apo � AI, and luxA; ‘‘AI’’ includes wild type, luxA, luxI � AI, and
apo � AI; and ‘‘no AI’’ includes apo and luxI.

†Number of transcripts differentially regulated between conditions (see Methods).
‡Known, related to a described gene; unknown/hypo, undescribed or hypothetical protein; no hits, no significant homology to the nonredundant database of
Genbank as determined by BLASTX analysis.

§Letter designation indicates the expression class in Fig. S1 and/or Table S4.
¶n.a., not applicable.

Chun et al. www.pnas.org/cgi/content/short/0802369105 7 of 12

http://www.pnas.org/cgi/content/short/0802369105


Table S2. Transcripts regulated in grouped conditions (the presence of symbionts, luminescence and/or AI)

Identifier Annotation of transcript*

Fold change†

S/NS L/NL A/NA‡

Require symbionts producing luminescence and AI§ (n � 8)
SQabh-m-16 Lipopolysaccharide binding protein (LBP/BPI) 8.6 4.4 3.4
SQaaf-h-03 Peptidoglycan recognition protein 1 (PGRP1) 7.3 4.7 2.2
SQaab-n-03 Galaxin-1 (invertebrate protein; unknown function) 4.8 3.3 2.6
SQabd-a-21 Galaxin-2 (invertebrate protein; unknown function) 4.1 2.9 2.2
SQaay-n-03 Tetraspanin 3 (TSPAN3) regulator of membrane protein trafficking 2.2 1.9 1.5
SQaaq-p-05 Unknown 9.4 4.9 2.6
SQabd-h-03 Unknown 4.1 3.5 1.9
SQaaw-d-09 Hypothetical 2.8 2.4 1.5

Require symbionts producing luminescence (no AI)
SQaab-c-08 Rhomboid domain-containing 1 (RHBDD1) membrane protease 3.4 2.7
SQaao-n-19 Glutamate receptor, ionotropic, N-methyl D-aspartate-assoc. 1 (GRINA) 2.2 2.4
SQaae-d-01 M2 (small) subunit of ribonucleotide reductase (RRM2) (DNA synthesis) 2.0 2.5
SQaal-j-05 Guanylate cyclase 1, soluble, beta 2 (GUCY1B2), retina-associated �2.4 �1.8
SQaap-o-17 Unknown 2.7 2.1
SQabc-k-15 No significant hits 2.5 2.0
SQaaa-g-18 Hypothetical �2.4 �2.1
SQabf-h-04 Unknown �2.7 �2.3
SQaaf-i-15 No significant hits �3.2 �2.5

Require symbionts producing AI (no luminescence) (n � 2)
SQabb-g-13 CCAAT enhancer binding protein (CEBPB) 2.4 1.7
SQaac-i-20 DC12 (unknown function) 2.3 1.7

Require symbionts (no luminescence, no AI) (n � 51)
SQabe-n-18 ETS-family transcription factor (ELF3) 3.3
SQaao-p-19 Fas apoptotic inhibitory molecule 2 (FAIM2) 3.2
SQaaj-n-15 Calsequestrin 1 (CASQ1) calcium-binding protein 2.9
SQaak-m-10 Transposase 2.6
SQaac-f-23 Vertebrate adenosine A3 receptor (ADORA3) 2.4
SQaba-a-08 Cullin-3 (CUL-3) (proteasome/ubiquitin pathway of protein degradation) 2.3
SQabi-l-15 Integrin, beta 1 (ITGB1) extracellular-matrix protein 2.3
SQaaa-n-06 Solute carrier family 1 (GLAST), glutamate transporter 2.3
SQaar-j-17 Super cysteine-rich protein (SCRP) 2.2
SQabd-d-05 Low-density lipoprotein receptor-rel. prot. 2 (Megalin, gp330) (endocytosis) 2.2
SQaaq-f-07 Peptidoglycan recognition protein 2 (PGRP2) 2.0
SQaaw-l-02 Annexin A7 (Synexin) calcium-binding protein 2.0
SQaai-b-17 Receptor (TNFRSF)-interacting serine-threonine kinase 1 �2.0
SQabf-n-17 Dynein heavy chain 7 (DHC7), cilia associated �2.0
SQaas-p-14 Testis specific gene A2 (TSGA2) (assoc. with motility, and egg interaction) �2.0
SQaab-b-03 TBC (Tre-2/Bub2/Cdc16) domain (GTPase activation) �2.0
SQaag-l-03 AKAP-associated sperm protein (ASP) (phosphorylation; sperm motility) �2.0
SQaaz-m-12 Doublecortin and CaM kinase-like 3 (DCAMKL3), microtubule-associated �2.0
SQabk-g-07 Golgi autoantigen, golgin subfamily a, 4 (membrane trafficking) �2.1
SQabc-h-02 Uroporphyrin-III C-methyltransferase (regulation of porphyrin synthesis) �2.1
SQaau-o-20 Stromal protein associated with thymus and lymph nodes isoform 2 �2.1
SQaab-j-01 Zonadhesin isoform 2 (ZAN), sperm protein associated with binding to egg �2.1
SQabe-l-09 Mitogen-act. prot. kinase kinase kinase 9 (MAP3K9) (c-Jun/JNK apoptosis) �2.2
SQabk-o-09 Sperm-tail protein SHIPPO1 isoform 2 (ODF3) �2.2
SQaat-f-20 Reticulocyte binding protein 2b �2.3
SQabb-h-05 Lamin (LAM) nuclear-associated intermediate filament �2.3
SQaae-h-11 Excision repair complementing rodent repair deficiency, comp. (ERCC8) �2.4
SQaaw-l-14 Annexin A7 (Synexin) calcium binding protein �2.6
SQabc-e-07 Ciliary rootlet coiled-coil, rootletin protein �2.6
SQaae-j-15 Axonemal dynein heavy chain 7 (DNAHC7) sperm/ciliary microtubule prot. �2.7
SQaac-h-19 Dual-specificity tyrosine-(Y)-phosphorylation reg. kinase4 (DYRK4) (testes) �3.7
SQaaw-i-02 No significant hits 2.8
SQaaq-c-05 No significant hits 2.8
SQabj-d-01 Unknown 2.7
SQaaq-d-04 No significant hits 2.6
SQaam-h-22 Hypothetical 2.2
SQaap-m-24 No significant hits 2.0
SQaaf-h-16 Unknown �2.0
SQaaa-f-22 No significant hits �2.0
SQaaw-d-08 No significant hits �2.1
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Identifier Annotation of transcript*

Fold change†

S/NS L/NL A/NA‡

SQaar-l-19 Unknown �2.1
SQaax-c-19 Hypothetical �2.1
SQaaj-e-07 Unknown �2.3
SQaar-n-21 No significant hits �2.3
SQaac-h-09 Hypothetical �2.3
SQaat-b-08 Hypothetical �2.3
SQaao-l-06 No significant hits �2.5
SQabc-l-03 Hypothetical �2.6
SQaad-j-22 No significant hits �2.8
SQaab-e-07 Hypothetical �3.4
SQaag-n-09 No significant hits �5.0
Require luminescence only (n � 2)
SQabf-o-02 No significant hits 2.3
SQabh-m-05 Unknown 2.1
Total number of transcripts in each category: 70 19 10

*Classified based on whether their responses required one, two, or all three of the conditions; no transcripts were found that responded either solely to the
presence of AI, or to light and AI.

†Those transcripts up- or down-regulated �2-fold in all four normalizations, calculated as the first condition relative to the second; S/NS, symbionts vs. no
symbionts; L/NL, light vs. no light; or A/NA, AI vs. no AI.

‡Transcripts in the A/NA category were not always significantly differentially regulated in all four normalizations.
§Category of grouped conditions; n � total number of transcripts.
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Table S3. QRT-PCR confirmation of microarray transcript regulation

Gene

Fold change

Primer sequences

Annealing
temperature/product

size*Microarray QRT-PCR

WT vs. Apo†

Transcription factor IIB (TFIIB) �1.9 �1.8 Forward: 5’AAT GCC GAT GCG TCT TGA TGA TGG 58°C/83 bp
Reverse: 5’ AAT TGC TGC CAT AAG CTC TGC GTG

NADPH oxidase (gp91phox) (CYBB) �1.8 �2.0 Forward: 5’GCC AAC ACC TGA CCA ACT TCC AAT 58°C /104 bp
Reverse: 5’TTC CCG TGC CGA TAA ATA CGT CCA

Matrix metalloproteinase 17 3.2 2.7 Forward: 5’GCC AGA TTG GTT GGC TTT CCT CTG 61°C /113 bp
Preproprotein (MMP17) Reverse: 5’GAC GCA GCC ATT TCG TCC GAT AAC
Low density lipoprotein receptor- 4.3 4.0 Forward: 5’TTC AAT GCG CGC ACT AAT TGG AGG 58°C /122 bp

related protein 2 (Megalin, gp330) Reverse: 5’ACT TAG CCG CCA CTA TGA AGC TGA
M2 (small) subunit of ribonucleotide 2.8 2.6 Forward: 5’AGA ATT GTC GCC TTT GCT GCT GTG 58°C / 91 bp

reductase (RRM2) Reverse: 5’CCG GCA TCA CAG AGC GTT TCT TTA
LBP 11.5 10.5 Forward: 5’CTG ACT GCA ATG GAG AGC AAG ACG 62°C / 84 bp

Reverse: 5’ CAC TGA CTG CCT TAC ACT GGC AAC
Glutathione peroxidase �1.9 �1.7 Forward: 5’CCA GAT GAA TGA GCT GGT CG 61°C /132 bp

WT vs. luxA† Reverse: 5’CCA GGA CGG ACA TAG CAA AG
Hemocyanin 68.9 8.7 Forward: 5’CAG TAG TCG GTC TGT TCC AAG GCT 62°C /122 bp

Reverse: 5’TTA GTC CAG AGA CGA TGA CCG CAC
MMP19 �2.3 2.3 Forward: 5’ TCC ACC GAC TAC AAC CAC GAA CAA 62°C / 92 bp

Reverse: 5’ CCT TTG CAT CTG TGA AGG CTG CTT
Colony stimulating factor 15.4 5.0 Forward: 5’TCG CCC GTG GAA ATT ACG ATC CTG 61°C /103 bp

Reverse: 5’GAT GGC GCG TGT TTG TTC AGC TTC
Control transcript not not Forward: 5’GAG CGT AAA TAC TCT GTC

Actin regulated regulated Reverse: 5’GAG AAT TTG TAG AGT AGC G 56°C /148 bp

*Annealing temperature at which efficiencies were between 90 and 105%.
†Conditions being compared.
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Table S6. Symbiosis-regulated genes shared among different hosts

Regulated in zebrafish and mouse, but not in E. scolopes
1. angiogenin 4
2. C-reactive protein, pentraxin-related
3. deleted in malignant brain tumors 1; crp-ductin
4. deoxythymidylate kinase (thymidylate kinase)
5. farnesyl diphosphate synthetase
6. fat specific gene 27
7. RNA-binding protein FUS
8. glial cell line derived neurotrophic factor family receptor alpha 1
9. interferon-related developmental regulator 1
10. immunoresponsive gene 1
11. peroxisome proliferative activated receptor, alpha
12. scinderin
13. serum/glucocorticoid regulated kinase
14. transferrin receptor

Regulated in zebrafish and mouse; present in E. scolopes, but not regulated
1. angiotensin converting enzyme
2. apolipoprotein B
3. arginase 2
4. ATP-binding cassette, sub-family C (CFTR/MRP), member 2
5. B-cell leukemia/lymphoma 6
6. complement component 3
7. cytochrome P450, family 7, subfamily A, polypeptide 1
8. exostoses (multiple) 1
9. fasting-induced adipose factor; angiopoietin-like 4
10. FK506 binding protein 5
11. flap structure specific endonuclease 1
12. four and a half LIM domains 1
13. fructose-1,6-bisphosphatase 1
14. growth arrest and DNA-damage-inducible, beta
15. H2A histone family, member X
16. heterogeneous nuclear ribonucleoproteins methyltransferase-like 2 (S. cerevisiae)
17. interferon-induced protein with tetratricopeptide repeats 1
18. lactate dehydrogenase B
19. lectin, galactoside-binding, soluble, 9 (galectin 9)
20. nuclear receptor subfamily 1, group D, member 2; Rev-ErbA-beta
21. peptidylprolyl isomerase C-associated protein
22. phenylalanine hydroxylase
23. phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85 alpha)
24. serum amyloid A1
25. suppressor of cytokine signaling 3
26. tropomyosin 3, gamma
27. tryptophanyl-tRNA synthetase
28. tyrosyl-tRNA synthetase
29. VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa

Regulated in zebrafish and mouse; present in E. scolopes, and symbiont-regulated
1. proteasome (prosome, macropain) subunit, alpha type 5
2. ADP-ribosylation factor 1
3. tumor necrosis factor, alpha-induced protein 2
4. E74-like factor 3 (ETS domain transcription factor, ELF3, epithelial-specific)
5. ribonucleotide reductase M2
6. solute carrier family 31 (copper transporters), member 1
7. arginine-rich, mutated in early stage tumors
8. phosphogluconate dehydrogenase
9. hydroxysteroid (17-beta) dehydrogenase 2
10. cathepsin L
11. N-sulfotransferase
12. solute carrier family 34 (sodium phosphate), member 2
13. calcium binding protein 5 (centrin)
14. glutathione peroxidase 2 (gastrointestinal)
15. cysteine rich protein 2
16. vacuolar protein sorting 35

Vertebrate–species annotation shown.
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Other Supporting Information Files

Table 4(XLS)
Table 5(XLS)

Table S7. Squid, zebrafish, and mouse transcripts differentially regulated in response to symbiont colonization

Transcript annotation Predicted function

Fold change*

Squid Zebrafish Mouse

Proteasome (prosome, macropain) � 1 (PMSA1)† NF-kappaB pathway 130 2.5 2.8
ADP-ribosylating factor 6 interacting protein (ARL6AIP)†‡ Cell cycle arrest and apoptosis 97 2.6 2.0
Tumor necrosis factor, alpha-induced protein (TNFAIP8)†‡ NF-kappaB pathway 12 2.3 5.6
ETS-family transcription factor (ELF3)‡§ Epithelial differentiation, apoptosis, iNOS 4.6 �5.3 2.6
Ribonucleotide reductase M2 (RRM2)§ Cellular proliferation, induces NF-kappaB activity 2.8 3.1 2.3
Solute carrier family (SLC1)†‡ Enhanced cellular uptake of long-chain fatty acids 2.0 �2.5 �4.0
Arginine-rich mutated in early stage tumors (ARMET)§ Unknown 1.7 3.8 2.5
Phosphogluconate dehydrogenase§ Pentose phosphate shunt/reactive oxygen species 1.7 2.3 2.6
Hydroxysteroid (17-beta) dehydrogenase 12b†‡ Metabolism 1.6 �2.3 �2.5
Cathepsin L (CTSL)‡§ Acid-dependent lysosomal cysteine protease 1.5 2.3 2.8
Sulfotransferase‡§ Development, immune response �1.7 2.0 �2.5
Centrin†‡ Cell division �1.8 2.8 3.0
Glutathione peroxidase (GPX)† Oxidative burst pathway �1.9 2.7 1.9
Ataxin (super cysteine-rich protein 2) (SCRP)†‡ Stress granule and P-body assembly, apoptosis �1.9 3.2 3.2
Solute carrier family (SLC 25)†‡ Shuttle metabolites �2.0 2.6 2.6
Vacuolar protein sorting 18 (VPS18)†‡ Ubiquitin (E3) ligase �4.3 2.0 2.5

*Fold change of differentially regulated transcripts calculated as colonized over uncolonized conditions.
†Transcripts annotated as members of a similar gene family in squid, zebrafish and mouse; squid annotation is shown.
‡Transcripts, either homologs or belonging to a similar gene family, differentially regulated during infections with Yersinia enterocolitica [Handley S, Dube P,
Miller V (2006) Histamine signaling through the H(2) receptor in the Peyer’s patch is important for controlling Yersinia enterocolitica infection. Proc Natl Acad
Sci USA 103:9268–9273.].

§Transcripts annotated as homologs in squid, zebrafish and mouse.
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