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Newly hatched juveniles of the Hawaiian squid Euprymna scolopes rapidly become colonized by the biolu-
minescent marine bacterium Vibrio fischeri. Motility is required to establish the symbiotic colonization, but the
role of chemotaxis is unknown. In this study we analyzed chemotaxis of V. fischeri to a number of potential
attractants. The bacterium migrated toward serine and most sugars tested. V. fischeri also exhibited the
unusual ability to migrate to nucleosides and nucleotides as well as to N-acetylneuraminic acid, a component
of squid mucus.

Upon hatching, the light organ of the juvenile Hawaiian
squid, Euprymna scolopes, is specifically colonized by the lumi-
nous marine bacterium Vibrio fischeri (reviewed in references 7
and 13). V. fischeri cells present in the seawater aggregate in
mucus secreted from the light organ and then appear to stream
into the openings of the light organ (10), suggesting directed
movement by the bacterium. The light-organ mucus, secreted
upon bacterial exposure (10) and subsequently within the light
organ in response to symbiotic colonization (9), contains two
sugars, N-acetylgalactosamine (NAGal) and N-acetylneura-
minic acid (NANA) (10). These sugars, as well as amino acids
and peptides within the light organ (6), may serve as nutrient
sources and/or chemoattractants to enhance entry by V. fisch-
eri, which must be motile to colonize successfully (5). To begin
investigating the potential role of chemotaxis in symbiotic ini-
tiation, we characterized the response of the bacterium to
various nutrients.

Motile cells inoculated onto a soft agar medium containing
two attractants form an outermost ring in response to a spatial
gradient that results from the consumption and subsequent
diffusion of the preferred attractant (14). Similarly, an inner
ring forms to the second attractant (11 and B. M. Pruss and
A. J. Wolfe, unpublished data). When inoculated onto TB-SW
soft agar plates (1% tryptone, 0.88% NaCl, 0.62% MgSO4,
0.072% CaCl2, 0.038% KCl, 0.25% agar), cells of V. fischeri
strain ES114 (2) formed two concentric rings (Fig. 1A). Cells
of Escherichia coli also form two rings on tryptone-based soft
agar, with the outer and inner rings sensing serine and aspar-
tate, respectively (1). We therefore tested whether V. fischeri
also migrated to serine and aspartate. While the bacterium did
not respond to aspartate (data not shown), the addition of
increasing concentrations of serine to the soft agar slowed the
migration of the inner ring of V. fischeri, indicating that the

cells present in that ring consume, sense, and migrate to serine
(Fig. 1B and C). We used an excess of serine to disrupt the
gradient and found that serine perturbed migration of the
inner ring (arrows in Fig. 1 depict the location of the spot of
serine). Closer inspection of the rings revealed that a doublet
we occasionally observed (e.g., Fig. 1B) consisted of faster-
migrating cells on the surface of the plate and slower-migrating
cells deeper in the agar, both of which responded to serine.
Because the doublet responded as a unit to the addition of
serine, we believe it should be considered a single, serine-
responsive ring. Serine can be metabolized anaerobically by
organisms such as E. coli (1); thus, the separation may result
from a lag in migration due to the less-oxygenated environ-
ment deep in the plate. This would explain the apparent dis-
crepancy between this report of two migrating rings and a
recent report that mentions three (8).

We sought further evidence that the cells in the inner ring
sensed serine, taking advantage of the fact that rings of bacte-
ria migrating toward the same attractant will fuse when they
meet (1). Using TBS soft agar plates (1% tryptone, 2% NaCl,
and 0.25% agar), we coinoculated V. fischeri cells with E. coli
cells. The inner ring of V. fischeri fused with the outer (serine-
sensing) ring formed either by wild-type E. coli (Fig. 1D) or a
tar mutant that cannot sense aspartate (Fig. 1E); the fused ring
was perturbed when an excess of serine was spotted just be-
yond the ring. In contrast, neither ring of V. fischeri fused with
the single aspartate-sensing ring of an E. coli tsr mutant (Fig.
1F). These results confirmed that V. fischeri cells in the inner
ring migrate toward serine and that those in the outer ring do
not sense aspartate.

To identify the substrate sensed by the outer ring of V.
fischeri, we spotted each of the other 18 amino acids onto
Tris-buffered TB-SW soft agar plates just beyond the migrating
rings. Although alanine, arginine, asparagine, histidine, and
threonine slightly perturbed the inner ring, no amino acid
perturbed the outer ring (data not shown), suggesting that the
cells in the outer ring do not recognize an amino acid. We
therefore investigated the ability of V. fischeri to migrate to-
ward other components of tryptone and found that the outer

* Corresponding author. Mailing address: Department of Microbi-
ology and Immunology, Loyola University Chicago, 2160 S. First Ave.,
Bldg. 105, Maywood, IL 60153. Phone: (708) 216-0869. Fax: (708)
216-9574. E-mail: kvisick@lumc.edu.

† Present address: University of Southern Indiana, Department of
Biology, Evansville, IN 47712.

7527



ring of cells responded to the nucleoside thymidine (Fig. 2A).
Increasing concentrations of thymidine added to Tris-buffered
TB-SW plates caused cells in the outer ring to migrate more
slowly, and an excess of thymidine perturbed that migration
(data not shown). This suggests that in TB-SW this organism
preferentially consumes and senses thymidine over serine. In-
deed, V. fischeri cells grew with thymidine as a sole carbon
source (data not shown). Supplementation with other ribo-
nucleosides (adenosine, guanosine, uridine, and cytodine) sim-
ilarly slowed the migration of the outer ring of V. fischeri cells,

and spotting with an excess of these ribonucleosides just be-
yond the rings formed on TB-SW perturbed only the outer ring
(Fig. 2B and C and data not shown), indicating that these cells
could respond to any ribonucleoside. We also spotted with
deoxynucleotide triphosphates (dATP, dCTP, dGTP, dTTP),
which similarly perturbed only the outer ring (data not shown).
Because deoxynucleoside triphosphates differ from ribo-
nucleosides in two ways, the sugar moiety (deoxyribose versus
ribose) and the phosphorylation state (triphosphate versus un-
phosphorylated), these data suggest that neither the sugar

FIG. 1. (A-C) Migration of V. fischeri to serine. V. fischeri cells were inoculated onto TB-SW plates in the absence (A) or presence of increasing
concentrations of serine (0.75 mM [B] or 2 mM [C]). Plates were incubated at 28°C for 5 h. Arrows indicate where an excess of serine was spotted
directly onto the plate just beyond the migrating rings. (D-F) Cells of V. fischeri (V) and E. coli (E) were coinoculated on TBS soft agar plates.
(D) E. coli strain RP437, wild-type for chemotaxis. (E) E. coli strain RP5854, tar. (F) E. coli strain RP5714, tsr. E. coli cells were inoculated at 28°C
for 7 to 12 h prior to inoculation with V. fischeri, followed by incubation for an additional 5 h. Arrows indicate where an excess of serine was spotted
directly onto the plate just beyond the migrating rings.

FIG. 2. Migration of V. fischeri to nucleosides and their components. V. fischeri cells were inoculated onto Tris-buffered TB-SW soft agar plates
for 5 h at 28°C. (A) Aliquots (10 �l) of 0.121 M thymidine (T) and 2 M serine (S) were spotted just beyond the migrating rings of V. fischeri.
(B) Serine (2 M) (S) and cytidine (0.171 M) (C) were spotted just beyond the migrating rings formed on Tris-buffered TB-SW plates containing
1 mM cytidine. Note that the ring perturbed by serine is now located on the outside of the ring perturbed by cytidine. (C) Aliquots (10 �l) of
equimolar concentrations (0.066 M) of uridine (U), uracil (u), ribose (R), and deoxyribose (dR) were spotted onto plates just beyond the migrating
rings. Serine (2 mM) was added to all plates to provide a better separation of the inner and outer rings for visualization of the response to
nucleoside or nucleoside component addition. An excess of serine (S) was spotted at the top of each plate as a comparison.

7528 DELONEY-MARINO ET AL. APPL. ENVIRON. MICROBIOL.



component nor the phosphorylation state constitutes a critical
component of recognition.

We then tested whether V. fischeri cells in the outer ring
responded to the whole nucleoside molecule or to its compo-
nents (base or sugar) by spotting equimolar concentrations
(0.066 M) of these substrates just beyond the outer ring. V.
fischeri cells preferentially responded to the entire molecule
(Fig. 2C and data not shown). Neither ribose nor deoxyribose
perturbed the outer ring (Fig. 2C). Uracil and thymine occa-
sionally caused only slight perturbations, while cytosine, gua-
nine, or adenine did not (Fig. 2C and data not shown). When
uracil and thymine were tested at higher concentrations, a
slight perturbation was consistently observed (data not shown).
Adenine, cytosine, and guanine were not tested at higher con-
centrations due to their insolubility. Thus, V. fischeri can con-
sume, sense, and migrate to nucleosides and nucleotides. To
our knowledge this is the first report of bacterial migration
toward the building blocks of DNA and RNA. Whether this
ability enhances colonization of E. scolopes by V. fischeri is
unknown; however, it is not unreasonable to expect a higher
concentration of nucleic acids in the vicinity of the squid,
particularly because surface cells of the light organ undergo
apoptosis during early stages of symbiotic colonization (4).

In addition to serine and nucleosides and nucleotides, V.
fischeri may perform chemotaxis to sugars. Surface molecules
of host cells frequently contain sugar moieties, and the mucus
secreted by E. scolopes contains the sugars NANA and NAGal.
We therefore tested the ability of V. fischeri to migrate in
response to a variety of sugars and other substrates. Potential
chemoattractants were either added to or spotted on one of
two media: TB-SW and HEPES minimal medium (12) con-
taining 25 mM mannitol (MM-M). Mannitol serves as a carbon
source but not as an attractant for V. fischeri (Fig. 3, first row,
column A). As shown in Table 1, V. fischeri migrated toward a
variety of substrates (13 of 18 tested), including glucose, cel-
lobiose, and to a lesser extent, ribose. Ribose caused a faint
additional inner ring to form but did not slow migration of the
outer ring, implying that the receptors for thymidine and ribose
are distinct. The same was true for cyclic AMP (3).

When we tested the two sugars present in squid mucus, we
found that whereas NANA served as a chemoattractant for V.
fischeri, NAGal did not (Fig. 3, first row, column B, and Table
1). To test whether this attraction is a common trait among
other vibrio species, we examined the ability of the marine
isolates V. anguillarum and V. parahaemolyticus to migrate to
the sugar. Unlike that of V. fischeri, migration of V. anguillarum

FIG. 3. Migration of various Vibrio strains to NANA and other sugars. Cells of V. fischeri (V.f.), V. anguillarum strain PKJ (V.a.), and V.
parahaemolyticus strain KNH1 (V.p.) were inoculated near the center of MM-M soft agar plates (column A) or MM-M soft agar plates containing
either 1 mM NANA (column B), 1 mM glucose (column C), or 1 mM NAG (column D). Plates were incubated at 28°C for approximately 24 h.
Arrows indicate where an excess of the respective carbon source was spotted onto the plate just beyond the migrating rings.
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and V. parahaemolyticus was not improved by the addition of
NANA to MM-M, nor was migration perturbed by spotting
with NANA (Fig. 3, columns A and B). In contrast, all three
organisms formed rings in response to either 1 mM glucose or
1 mM N-acetylglucosamine (NAG), which were perturbed by
an excess of either glucose or NAG, respectively (Fig. 3, col-
umns C and D). This potentially unique chemotaxis to NANA,
combined with the ability of V. fischeri to use NANA as a
carbon source (data not shown), raises the intriguing possibility
that migration toward this sugar could contribute to initiating
symbiotic colonization.

Given the absolute requirement for motility in symbiotic
colonization (5), the data reported here provide an important
first step in assessing the contribution of chemotaxis to colo-
nization. V. fischeri apparently encodes an unusually large
number of chemoreceptors; over 40 genes contain putative
chemotaxis signaling motifs (C. R. DeLoney-Marino, unpub-

lished observations). We are presently working to identify re-
ceptors specific for the identified attractants by constructing
and characterizing chemotaxis mutants. These mutants will
permit more direct testing of a potential role for chemotaxis in
establishing the Vibrio-squid symbiosis.
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TABLE 1. Response of V. fischeri to various substrates added to
TB-SW or MM-M

Substrate
Medium

TB-SWa MM-Mb

Cyclic AMP � �
Cellobiose �� ND
Choline � �
Deoxyribose � ND
Fructose �� �
Galactose � ND
Glucose �� ��
Glucosamine � �
Glycerol � �
Maltose � ND
Mannitol � �
Mannose � ��
NAGal � �
NAG �� ��
NANA � ��
Raffinose � ND
Ribose � ND
Sucrose �� ND

a For TB-SW, a positive response was noted if an additional concentric ring
formed that was subsequently perturbed by spotting the appropriate substrate.
��, dense ring; �, faint ring; � no ring.

b For MM-M, a positive response was noted if addition of a substrate, added
at concentrations of 1 �M to 10 mM, allowed the cells to form a ring that
migrated beyond the zone of growth formed in the presence of MM-M alone.
��, radius of �10 mm; �, radius of �10 mm; �, no difference. ND, migration
to this substrate was not tested under these conditions.
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