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Abstract Bacterial quorum-sensing regulatory systems can
be summarized in a simple model wherein an autoinducer
molecule accumulates in cultures and stimulates regulatory
changes in gene expression upon reaching a critical
threshold concentration. Although quorum sensing was
originally thought to be an isolated phenomenon governing
the regulation of a handful of processes in only a few
bacteria, it is now considered to be a widespread mecha-
nism for coordinating bacterial gene expression. Over
decades of research, investigations of autoinducer-mediated
regulation have revealed that these systems are far more
complicated than originally appreciated, and such discov-
eries have accelerated recently with the application of
molecular and genomic tools. The focus of this review is to
highlight recent advances describing complexities that go
beyond the simple model of quorum sensing. These
complexities include the regulation of autoinducer produc-
tion and degradation, the presence of multiple quorum-
sensing systems in individual bacteria that regulate diverse
genes, often in coordination with other regulatory elements,
and the influence of interorganismal interactions on quorum
sensing.
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Introduction

Studies of autoinduction or quorum sensing were initiated
over forty years ago by curious investigators attempting to

explain the pattern of light production in cultures of
bioluminescent marine bacteria [1–3]. They found that
these bacteria exude a bacterial pheromone or
Bautoinducer^ that accumulates in growing cultures and
stimulates bioluminescence only when it has reached a
critical threshold concentration [4, 5]. The model that
emerged from these studies is illustrated simplistically in
Fig. 1a. Importantly, this model explained why some
bacteria, such as Vibrio fischeri, did not produce biolumi-
nescence when cells were dilute but glowed brightly when
populations became more densely packed [5, 6]. This
bioluminescence-stimulating compound of V. fischeri was
identified over a decade later as a N-acylhomoserine lactone
(AHL), specifically N-3-oxo-hexanoyl homoserine lactone
(Fig. 1b) [4].

Although the autoinduction model was initially met with
skepticism, it became widely accepted after the isolation
and characterization of the genes necessary for light
production and regulation of luminescence expression [7,
8]. Through these studies it was discovered that the
regulatory functions and enzymatic activities necessary for
light production in V. fischeri were encoded on an 8-kb
DNA fragment, consisting of the luxICDABEG operon and
the divergently transcribed luxR gene (Fig. 2). The
luxCDABEG genes encode the enzymes necessary for light
production, while luxI encodes the AHL synthase and luxR
the AHL receptor. From this information, a more detailed
understanding of autoinduction of bioluminescence
emerged, where LuxI produces the AHL molecule, which
is freely diffusible across the cell membrane [9] and
accumulates in the culture medium, and where AHL bound
to LuxR activates transcription of the luxICDABEG operon,
resulting in the production of light (Fig. 2). Presumably, the
threshold concentration of autoinducer required to stimulate
luminescence is defined by the binding affinity of LuxR for
its cognate AHL.
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The general consensus at the time was that autoinduction
was an obscure phenomenon present in bioluminescent
marine bacteria [3], and that it was related to their dual
lifestyles. Bioluminescent bacteria can be found as dilute
free-living planktonic cells, but some also inhabit the light
organs of squid and fish [10], where they are maintained at
high densities of 109 to 1010 cells per ml. During such
dense symbiotic growth in their host, autoinducer accumu-
lates to sufficient levels to trigger bacterial light production
that is used in animal behaviors such as camouflaging by
counter-illumination [11]. The density-dependent induction
of bioluminescence ensures that the energetically expensive
process of light production [12] is not triggered in the
bacteria during free-living growth as planktonic cells in the
ocean.

Although the study of autoinduction was initiated to
explain a curious phenomenon in what were considered to
be Bunimportant^ marine bacteria [3], over the years similar
systems have been found in a variety of bacteria [13, 14].
AHL signals with varying acyl side chains are commonly
used as autoinducers by Gram-negative bacteria [15, 16],
but other autoinducer molecules such as peptides [17],
quinolones [18], and 4,5-dihydroxy-2,3-petanedione deriv-
atives collectively known as BAI-2^ [19, 20] have also been
discovered. The behaviors regulated in these systems are
usually those that are more productive when undertaken as
groups of cells rather than as individuals, and/or behaviors
that would be more profitable for cells in a diffusion-limited
environment, such as the secretion of extracellular
enzymes. Examples of autoinducer-triggered behaviors
include secretion of proteases or virulence factors, antibi-
otic production, sporulation, biofilm formation, genetic
competence, conjugative DNA transfer, and, as mentioned
above, bioluminescence.

With the discovery of many new autoinducers and
population-based regulatory systems, the term Bquorum
sensing^ (QS) was coined in the mid-1990s [21] to convey
the idea that bacteria used autoinducers to census their
culture density and to make certain decisions only when a
critical density, a Bquorum,^ was present. By making the
analogy to the practice of many organizations requiring a
quorum of members present to conduct business, the term
was readily understandable by those outside the field and it
highlighted the social nature of bacteria. However, in
human endeavors the rules of order are typically complex.
For example, in the United States House of Representatives
a quorum could be two members, one hundred members, or
two hundred and eighteen members, depending on the
action being taken. Moreover, a quorum is a starting point
required to do business, but another tally is still necessary
to make decisions, and for some group decisions multiple
votes may be required, different groups may have to
concur, and external forces may try to subvert the process.

Fig. 1a,b A Bsimple^ model of autoinduction or quorum sensing in V.
fischeri. a The AHL autoinducer (AI, triangle) is constitutively
produced by the bacterial cells (shaded capsule). At low cell densities
very little AI is present. As cell density increases, AI accumulates until
a threshold level is reached that then activates the production of light.
b Structure of the AHL autoinducer molecule produced by V. fischeri
LuxI, N-3-oxo-hexanoyl homoserine lactone, also known as 3-oxo-
C6-homoserine lactone. Different AHL synthases produce AHL signal
molecules that vary in the length of, and substitutions on, the acyl side
chain (the variable region is denoted by parentheses)

Fig. 2a,b Revised model of autoinduction or quorum sensing in V.
fischeri, reflecting the identification of the genes encoding the
regulatory functions and enzymatic activities necessary for light
production. a Under low cell densities, the AHL synthase LuxI is
constitutively expressed. LuxI produces autoinducer (AI or AHL),
which begins to accumulate but does not reach a threshold level, and
light is not produced. b Under high cell densities, AI accumulates to
the threshold level and binds the regulator LuxR, which activates
transcription of the luxICDABEG operon. The products of the
luxCDABEG genes are responsible for light production. The synthesis
of AI is regulated in a feedforward manner, where the activity of LuxI
stimulates its expression
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It should come as no surprise that systems regulating
group decisions by bacteria are at least as complex as those
governing societies. Over the years it has become clear that
bacterial QS systems do not respond purely to the number
of cells present, and recent applications of molecular and
genomic tools have accelerated the discovery of such
complexities. These studies have revealed that the process-
es of autoinducer-mediated gene regulation are often far
more complex than the simple model presented in Figs. 1a
or 2. This complexity is reflected in the regulation of
autoinducer production, the presence and regulation of
endogenous systems for degrading autoinducers, the mul-
tiple QS systems found in individual bacteria, the coordi-
nation of QS systems with other regulatory elements, and
the influence of other organisms on QS in bacteria. In this
review we highlight recent advances in the QS field that
have described these complex QS pathways.

Autoinducer accumulation: multiple levels of control

In the simplest model of QS, autoinducer is produced at a
constant rate and accumulates at a constant rate. If this were
true, autoinducer concentration would be a relatively
straightforward reflection of bacterial numbers and auto-
inducer diffusion rates over time; however, quorum
signaling is considerably more complicated, even in clonal
cultures. Many bacteria regulate autoinducer production
and some have the capacity to destroy their own auto-
inducers. Thus, the concentration of autoinducer actually
reflects a complicated set of parameters including environ-
mental influences.

It has been known for a long time that bacteria can regulate
the production of autoinducer. Perhaps the most obvious
example of this is the AHL synthase LuxI in V. fischeri,
whose activity stimulates its own expression (see above and
Fig. 2). Given the ubiquity and obvious functional logic of
feedback negative regulation in biological systems, such
feedforward positive regulation is striking, although not
unprecedented. Interestingly, this phenomenon is not limited
to V. fischeri, and autoinducer molecules stimulate auto-
inducer synthases in several bacteria, including the oppor-
tunistic pathogen Pseudomonas aeruginosa [22], the
tumor-generating plant pathogen Agrobacterium tumefaciens
[23], and the human pathogen Streptococcus pneumoniae
[24]. Although such feedforward regulation means that
autoinducers do not accumulate at a steady rate, it does
preserve a model of QS with internal control.

Perhaps more importantly, from an ecological perspec-
tive, regulation of autoinducer production can also respond
to inputs from outside the QS systems themselves, thereby
embedding QS systems in a larger, environmentally

responsive transcriptional network. Combined with the
feedforward autostimulatory nature of some QS systems
mentioned above, these environmental inputs can be greatly
amplified. Moreover, the regulatory networks controlling
QS can be quite complex. For example, the QS systems of
P. aeruginosa are modulated by several other regulators,
including VsqR, RsaL, QscR, GacA/RsmAZ, Vfr, RelA,
and RpoS [25]. The precise environmental signals detected
by these systems are not always clear; however, the latter
two regulators respond to the nutritional/growth status of
the cell. rpoS may also be regulated by QS, although this
finding is controversial [26, 27]. This connection of QS to
the availability of growth substrates represents a common,
though not universal, theme in the environmental regulation
of QS. For example, catabolite repressor (Crp) stimulates
autoinducer synthesis in V. fischeri in response to growth
substrates [28, 29]. By embedding quorum signaling with
such regulatory systems, bacteria are able to modulate the
production of autoinducers such that their concentration
reflects not only cell density but also specific parameters of
their environment.

Interestingly, bacteria can also control the local concen-
tration of autoinducer by degrading signals that they have
already generated. Investigation of bacteria consuming their
own autoinducers has recently gained momentum, but
relatively few examples have been examined and the
specifics of the systems are not yet as well-understood as
the synthesis of autoinducers. Both the prevalence of QS
systems and the results of bioinformatic searches for
homologs of known quorum-signal degraders [30] suggest
that these pathways may be more widespread than has been
appreciated, although their prevalence and ecological
importance are still uncertain.

What is clear is that diverse systems exist for auto-
inducer degradation in the bacteria that produce these
signals and that these autoinducer-degrading systems are
themselves regulated. For example, both A. tumefaciens and
P. aeruginosa can degrade the AHL molecules that they
produce, but they do so in biochemically distinct ways. A.
tumefaciens produces a lactonase, AttM, that hydrolyzes
AHLs to produce N-acylhomoserines [31], whereas P.
aeruginosa encodes multiple AHL acylases, including
PvdQ and QuiP, capable of cleaving the acyl side chain
from homoserine lactones (Fig. 3a) [30, 32, 33]. As might
be expected given the variability of AHL acyl groups, these
AHL acylases display some substrate specificity; however,
they do act on the signal molecules produced by P.
aeruginosa.

Just as autoinducer synthesis is regulated, and thereby
responsive to environmental inputs, so too are autoinducer
degradation pathways modulated and embedded in regula-
tory networks. For example, the P. aeruginosa AHL acylase
PvdQ is upregulated elevenfold in response to iron
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limitation [34], and expression of the A. tumefaciens
lactonase AttM is induced through a RelA-dependent
mechanism when cells are starved of carbon or nitrogen
[35]. At least superficially, theses examples of autoinducer
degradation being tied to nutrient availability are reminis-
cent of the regulation of autoinducer production. Most
strikingly, autoinducer production by P. aeruginosa and
autoinducer degradation by A. tumefaciens are each
regulated by the starvation response regulator RelA.
However, RelA activates both of these systems, so there
is not a consistent pattern toward increasing or decreasing
autoinducer accumulation based on starvation.

Controlled degradation of autoinducers could make for a
more dynamic and responsive signaling system; however,
an alternative model would be that autoinducers are
degraded simply for nutrition, as sources of carbon,
nitrogen, or energy. One argument against the latter model
is that autoinducers generally function at very low concen-
trations and would not appear to be attractive growth
substrates. Importantly, the autoinducer degradation sys-
tems described above catalyze AHL turnover at these low,
physiologically relevant concentrations. Moreover, al-
though P. aeruginosa is able to utilize AHL as a growth
substrate, A. tumefaciens is not. Similarly, although Salmo-

nella degrade their AI-2 signal, as described below, they do
not appear to use it as a carbon source [36]. When all of
these factors are considered, it seems most likely that the
regulation of autoinducer degradation allows bacteria to
Btake back^ an existing signal should conditions change.

The dynamic nature of autoinducer concentration,
mediated by controlled synthesis and degradation of the
signal, is well-illustrated in the accumulation of AI-2 in
culture. AI-2 production can be considered an offshoot, or
even a by-product, of the activated methyl cycle, and not
surprisingly AI-2 accumulation is connected to central
metabolism [37]. The role of AI-2 as a true QS autoinducer
is best understood in Vibrio harveyi, where recognition of
AI-2 by LuxP and LuxQ initiates a regulatory phosphory-
lation cascade [38, 39]; however, the regulation of AI-2
accumulation is more thoroughly studied in Escherichia
coli and Salmonella. In E. coli, the autoinducer synthase
LuxS appears to be modulated by CRP based on carbon-
source utilization of the cell, and in both bacteria the Pfs
enzyme that presumably supplies LuxS with substrate is
also transcriptionally regulated in response to the carbon
source available [40, 41]. In Salmonella, AI-2 production
correlates well with pfs expression [40]. Moreover, these
bacteria possess an elaborate system for sequestering and

Fig. 3a,b Mechanisms for enzymatic degradation of signal molecules
in bacteria. a AHL acylases and lactonases can degrade AHL
molecules with various acyl side chains. A generic AHL molecule is
shown to illustrate the enzymatic processes. b Proposed degradation
pathway for AI-2 in Salmonella or E. coli (modified from [43]). The

AI-2 molecule shown is (2R, 4S)-2-methyl-2,3,3,4-tetrahydroxytetra-
hydrofuran or R-THMF, which is phosphorylated by LsrK. The
phosphorylated AI-2 molecule is ultimately degraded by LsrF and
LsrG. The method by which LsrF and LsrG degrade AI-2 is currently
under investigation
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destroying the AI-2 already released in culture. The current
model (Fig. 3b) proposes that LsrB binds AI-2 and shuttles
it back into the cell via a transporter composed of LsrA,
LsrC, and LsrD, and that AI-2 is then phosphorylated by
LsrK and ultimately degraded by LsrF and LsrG [41, 42].
Like pfs, the lsr genes are themselves regulated, in part by
CRP [41, 43] and also by LsrR, which derepresses most lsr
genes in response to internalized and phosphorylated AI-2.
These systems, and others regulators that are not yet fully
described, function such that AI-2 accumulation is influ-
enced by carbon source, osmolarity, pH, iron, oxygenation,
redox state, various stresses, and AI-2 itself [44–46]. In
contrast to the simple model of autoinducer reflecting cell
numbers, AI-2 levels in batch cultures of E. coli and
Salmonella usually peak and then decline.

In addition to being consumed, autoinducers may be
removed from a system simply by diffusing away. Under
many laboratory conditions where QS is studied, for
example with cultures grown in flasks or test tubes, the
concentration of autoinducer is generally not affected by
local diffusion, because samples are well-mixed and the
system is closed. However, in different real-world
environments, the same number of cells producing and
consuming autoinducer at the same rates may experience
different autoinducer concentrations based on local auto-
inducer diffusion rates. Recently, an alternative view for
the function of QS has emerged where autoinducer
functions as an environmental probe to allow a bacterial
cell to determine the extent of mixing and diffusion in its
immediate environment [47]. It is argued that autoinducer-
triggered behaviors can benefit single cells in a diffusion-
limited environment, in contrast to the idea that bacteria
utilize QS to act cooperatively. This raises an interesting
issue as to the evolution of signaling pathways and the
relation of the control of synthesis and degradation of
signals to the particular environmental niche occupied by a
bacterium, an area that warrants further exploration.

It is now clear that autoinducers do not necessarily
accumulate at a constant rate and are therefore not purely
Bcensus-taking^ molecules. Even for clonal cultures
grown in shake flasks in the laboratory, the concentration
of autoinducer reflects not only cell density but also the
growth conditions. Environmental signals are transduced
through regulatory networks that control both autoinducer
synthesis and, at least in some instances, autoinducer
degradation as well. Moreover, the Bfeedforward^ nature
of many QS systems can greatly amplify these environ-
mental inputs, and the net effects on the autoinducer-to-
cell ratio can be dramatic. Finally, environment-specific
barriers to autoinducer diffusion may influence the local
accumulation of autoinducer and QS behaviors. Thus,
autoinducer concentrations are dynamic and very much
context-dependent.

Another layer of complexity: multiple QS systems
in bacteria

When autoinduction or QS was first described in V. fischeri,
it was thought that this bacterium produced a single AHL
autoinducer that was produced by LuxI and detected by a
single receptor protein, LuxR [7, 8]. However, it has since
been found that V. fischeri possesses another AHL synthase,
AinS, which produces a second structurally distinct AHL
signal, octanoyl homoserine lactone, recognized by both
LuxR and AinR, which is also called LuxN [48]. V. fischeri
also produces an AI-2 type signaling molecule [49]. These
findings actually followed the first discovery of multiple
QS networks within an individual bacterium, which was
described in another bioluminescent marine bacterium, V.
harveyi [50]. The presence of multiple QS systems is now
known to be a common trait in bacteria, leading to questions
on the identities of the genes regulated by each system and
the role(s) of multiple systems in bacterial biology.

Molecular biological tools and whole-genome analyses
have been powerful tools in identifying genes belonging to
QS regulons in bacteria, most notably in the opportunistic
pathogen, P. aeruginosa. In particular, P. aeruginosa DNA
microarray analyses have provided new insight into the
complexities inherent in QS-controlled gene expression and
have provided a framework for comparative studies in other
organisms (reviewed in [25]). Through these analyses, it
has become apparent that the multiple QS systems in P.
aeruginosa influence the expression of a wide range of
genes, and, as mentioned above, QS gene regulation is
embedded in a network of regulatory pathways that respond
to environmental signals.

Using microarray analysis of specific P. aeruginosa QS
regulatory mutants, three independent groups identified
hundreds of genes belonging to the two QS regulons [25,
51–53]. While many predicted suites of genes (e.g., those
encoding virulence factors) were QS-regulated, these analy-
ses also identified genes whose products are involved in
Bhousekeeping^ cell processes such as central metabolism
[25], demonstrating that QS signaling can have global effects
on gene expression in bacteria and can influence cell
physiology. However, when comparing the three indepen-
dent studies, most of the Bregulated^ genes were identified
by only one or two of the groups, and only 102 QS-induced
genes were common to all three data sets [25]. Considering
the three experiments were performed in separate laborato-
ries with differences in experimental conditions, this inter-
esting result suggests that environmental conditions can have
profound influences on QS gene regulation.

One surprising result of these studies is that there
does not appear to be a single cell density at which all
QS-regulated genes are induced or repressed, and the
Bquorum^ required for expression depends on the gene
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and environmental conditions. The expression of indi-
vidual QS genes is influenced by the presence and/or
absence of each of the two P. aeruginosa AHL signals,
so the cells contain distinct regulons responsive to one or
both signals, each of which has its own critical threshold
concentration. In addition, many QS-controlled genes do
not respond to exogenously provided AHL signals until
the cells reach the stationary phase of growth [25, 52],
which can be explained by the requirement for the
stationary-phase A factor RpoS for activation of QS [26,
27, 54], or the presence of inhibitors in the culture
medium [55]. These results show that QS gene regulation
is not solely influenced by signal accumulation, but
requires the presence of additional factors and is respon-
sive to environmental conditions (reviewed in [25, 56]).
The fact that QS gene regulation is entangled in a network
of other regulatory pathways suggests that bacteria tightly
control this process so that particular QS regulon genes are
only expressed under the appropriate conditions. This
leads to the question of the role of these complex multiple
QS systems in bacterial growth in a Bnatural^ environ-
ment, for example during host colonization.

The use of model systems such as the symbiosis between
V. fischeri and the Hawaiian bobtail squid Euprymna
scolopes are beginning to reveal the importance of multiple
QS systems for bacteria inhabiting a natural environment.
This system has been studied for over 15 years as a model
for the extracellular colonization of host tissue by coopera-
tive and pathogenic bacteria [57, 58]. As mentioned above,
V. fischeri contains two AHL-based QS systems, LuxI/LuxR
and AinS/AinR, as well as a LuxS/AI-2-based QS system,
and these each influence the expression of bioluminescence
[7, 8, 48]. Since luminescence is an integral part of the
symbiotic relationship, the role of each system in light
production and host colonization were investigated.

These studies revealed a complex picture of the
involvement of each system in the regulation of light
production and host colonization (reviewed in [59]).
Analysis of luxI, luxS and ainS mutants during growth in
liquid culture and during host colonization revealed a
stepwise activation of the QS systems with increasing cell
density [60–62]. ainS and luxS influence light production
in broth cultures and are important for initiation of the
symbiosis, conditions that correspond to lower cell
densities. The AHL signal produced by AinS appears to
be the dominant signal under these circumstances, with
AI-2 playing a lesser role [49]. In contrast, the presence of
luxI has little if any influence on luminescence in liquid
culture, but is necessary for boosting luminescence during
later stages of the colonization process, corresponding to
the higher cell densities present in the squid light organ as
compared to laboratory culture conditions. It is important
to note that in certain strains of V. fischeri, including the

very brightly bioluminescent strains initially character-
ized, luxI does play a role in stimulating bioluminescence
in culture, which explains why it was discovered early on.
For reasons that are not yet clear, low expression of luxI in
culture appears to be a hallmark of the V. fischeri strains
isolated from E. scolopes [63, 64].

The involvement of ainS in initiation of colonization
suggested that this QS system influences the expression of
genes other than those responsible for light production. A V.
fischeri DNA microarray was used to identify genes whose
expression was altered in the presence of ainS, and this
approach revealed 30 differentially regulated genes poten-
tially involved in motility, transcriptional regulation, metab-
olism and biosynthesis of extracellular polysaccharides [60].
Although such detailed microarray analyses of the roles of
luxI and luxS are not yet published, a proteomic approach
suggested, not surprisingly, that the LuxI/LuxR system also
controls several target genes involved in a variety of
processes, including genes whose function are important
during host colonization [65]. Thus, although the LuxI/
LuxR, AinS/AinR, and AI-2 type QS systems were initially
implicated in the control of bioluminescence, in-depth
studies are revealing specific and distinct functions for each
system in the biology of V. fischeri and its interactions with
the squid host, and the function of autoinducer-mediated
gene regulation has proven far more complex than the
original model presented in Figs. 1 and 2.

The study of QS gene regulation in P. aeruginosa and V.
fischeri has provided valuable insight into the complex
roles of autoinducers as modulators of global regulatory
systems that influence many aspects of bacterial physiology
and host interactions. Moreover, these two model systems
are illustrative of similar discoveries in many other bacteria.
Although the initial simple model of quorum sensing (e.g.,
Fig. 1) requires only a single autoinducer compound to
serve as a census-taker and to direct population-based
regulatory decisions, it is now clear that several bacteria
produce multiple autoinducers, that their cognate regulators
are embedded in other regulatory networks, and that the
genes they control are not always clearly connected to
group behaviors. This surprising complexity and diversity
of QS in bacteria is likely a reflection of the evolution of
these systems in bacteria that need to respond to fluctuating
and diverse conditions, particularly during the transition
from life in the environment to living inside a host.

Outside influences on bacterial quorum sensing

Bacteria that regulate gene expression through AHL-based
QS are often found in mixed microbial consortia associated
with plants or animals. Because QS-related behaviors such as
virulence factor production, biofilm formation, and antibiotic
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production often have detrimental effects on the other
members of these dynamic communities, it is not surprising
that plants, animals, and other microorganisms have devel-
oped methods for interfering with QS signaling processes.

The first indication that compounds from other organ-
isms could influence QS in bacteria came with the
discovery that halogenated furanones produced by the
marine red alga Delisea pulchra acted as QS mimics that
could inhibit bacterial AHL-controlled processes [66]. The
mode of action of furanones is to bind to AHL receptor
proteins and promote their proteolytic degradation [67, 68].
Intriguingly, D. pulchra is known to be remarkably free of
bacterial fouling in marine environments, and the ability to
disrupt bacterial QS is thought to be at least partly
responsible for this characteristic. This initial report was
followed by the discovery that a green alga, Chlamydomonas
reinhardtii, and certain higher plants also secrete compounds
that affect AHL-based QS regulation in bacteria [69–71].
The chemical structures of these compounds remain to be
solved, but interestingly, most appear to stimulate rather than
inhibit AHL-controlled gene expression.

The ability to modulate AHL-based bacterial QS is not
limited to algae and plants. In addition to the AHL
degradation and turnover by autoinducer producers (de-
scribed above), numerous bacteria that do not produce AHL
signals also inactivate AHLs enzymatically through the
production of AHL acylases or lactonases (Fig. 3) [72–78].
It may be the case that interfering with QS signaling could
give these bacteria a competitive advantage when occupying
the same environmental niche as AHL-producing bacteria
[79]. In addition, certain bacteria can not only inactivate
AHLs, but also utilize them as sole carbon and/or nitrogen
sources for growth [75, 78, 80], adding another potential
benefit to the degradation of AHL signals. Although each
specific AHL signaling molecule may not be very abundant,
the total concentration of different AHLs in a microbial
community could make them an attractive nutrient source,
and AHL degraders may also find less competition for this
substrate and thus occupy a specialized niche. Enzymatic
degredation of AHL signals has also been described in
certain mammalian cell types [81, 82], suggesting that host
cells may be able to counteract QS signaling during bacterial
infection and colonization. The studies mentioned above
provide a just a sample of the ways in which other organisms
can influence AHL-based QS systems, and the intense
interest in this topic has resulted in several more compre-
hensive reviews [79, 83–85].

Conclusions

Early studies of autoinducer-mediated gene regulation led
to an intuitive and relatively simple model of QS systems as

mechanisms of censusing bacterial populations and regu-
lating the expression of genes with roles specific to life as
solitary cells or as dense groups. Over the years a much
more complex picture has emerged, wherein autoinducers
are dynamically controlled, individual cells produce multi-
ple autoinducer molecules, organisms compete by disrupt-
ing QS signals, and a wide range of genes are regulated in
coordination with other global regulators but not always
with direct correlation to population numbers. The discov-
ery that bacteria can use QS to regulate virulence gene
expression and other medically and economically important
behaviors has led to an explosion of research in this area,
and with these applications in mind, future research geared
toward unraveling QS in real-world environments will
undoubtedly uncover more complexities inherent in these
systems.
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