
Abstract The recent discovery that the fish pathogen
Vibrio salmonicida is closely related to the luminous 
bacteria Vibrio fischeri and Vibrio logei suggested that 
V. salmonicida might also be capable of bioluminescence.
Interestingly, cells of V. salmonicida were found to pro-
duce light in culture, but only when exposed to either an
aliphatic aldehyde and/or the major V. fischeri autoinducer
N-(3-oxo-hexanoyl)-L-homoserine lactone, a transcriptional
activator of the luminescence (lux) genes. An extract of
spent medium of V. salmonicida that should contain any 
V. salmonicida acyl-homoserine lactone autoinducer, when
added to V. fischeri cells, led to an induction of their lu-
minescence. These results show that V. salmonicida is a
newly recognized luminous bacterial species that appar-
ently both produces an autoinducer activity and responds
to exogenous V. fischeri autoinducer.
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Abbreviations Acyl-HSL Acyl-homoserine lactone ·
FMNH2 Reduced flavin mononucleotide · VAI-1 Vibrio
fischeri autoinducer N-(3-oxo-hexanoyl)-L-homoserine
lactone

Introduction

Vibrio salmonicida is a psychrophilic bacterium that is the
causative agent of cold-water vibriosis in Atlantic salmon
(Salmo salar), rainbow trout (Oncorhynchus mykiss), and
cod (Gadus morhua) (Egidius 1986; Wiik et al. 1989;

Sørum et al. 1990). Analyses of 16S rRNA gene se-
quences have revealed a close phylogenetic relationship
between V. salmonicida and the luminous marine bacteria
Vibrio fischeri and Vibrio logei (Wiik et al. 1995; Fidopi-
astis et al. 1998). However, phenotypic characterization
has shown that V. salmonicida is metabolically quite dis-
tinct from both of those species (Farmer and Hickman-
Brenner 1991). Since several other marine luminous bac-
terial species cluster phylogenetically (Nealson and Hast-
ings 1991), we examined isolates of V. salmonicida, a
species not previously known to be luminous, for visible
luminescence in culture. Interestingly, we discovered that
cultures of this species did produce detectable lumines-
cence if they were supplemented with an aliphatic alde-
hyde.

Bacterial luminescence results from the activity of lu-
ciferase, a mixed function oxidase that couples the oxida-
tion of reduced flavin mononucteotide (FMNH2) and an
aliphatic aldehyde by O2, yielding light as a product. The
genes encoding the enzymes required for luminescence
have been examined in at least five species and are typi-
cally organized in a single operon (Nealson and Hastings
1991). In each case, the operon contains the luciferase
genes (luxA and B) and those encoding the synthesis of
aldehyde substrate (luxC, D, and E), while in V. fischeri
the locus also contains two regulatory genes, luxI [the
VAI-1 autoinducer synthase gene; VAI-1 is the V. fischeri
autoinducer N-(3-oxo-hexanoyl)-L-homoserine lactone]
and luxR (the VAI-1 receptor gene). The luciferase and
aldehyde synthesis genes have been shown to be cotran-
scribed, and the regulation of this operon in several
species is influenced by the concentration of an acyl-ho-
moserine lactone (acyl-HSL) autoinducer (Nealson and
Hastings 1991).

The ability to produce light indicated that V. salmoni-
cida expresses luciferase genes; however, the apparent re-
quirement for exogenous aldehyde suggested that V. sal-
monicida either may lack the genes for aliphatic aldehyde
synthesis or, alternatively, may uncouple the regulation of
luxA and B from lux C, D, and E (Nealson 1977; Fuqua et
al. 1996). In the latter case, V. salmonicida might sepa-
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rately regulate aldehyde synthesis (and, thus, lumines-
cence) only in response to the presence of an acyl-HSL
autoinducer produced by other luminous bacteria (Visick
and Ruby 1998). In this study, we describe some aspects
of the physiology of luminescence of V. salmonicida, and
discuss our results in the light of two important questions
first posed by Nealson and Hastings (1991):

1. Are there groups of bacteria that possess genes for lu-
ciferase (or aldehyde synthesis) but do not normally
express them?

2. Is luminescence the primary role for luciferase in lu-
minous bacteria?

Materials and methods

Determination of luminescence on agar plates

V. salmonicida strains NCMB 2262 (Egidius et al. 1986; Table 1),
VS1, VS201, VS224, and VS420 (Sørum et al. 1988), each iso-
lated from diseased Atlantic salmon, were streaked onto a seawa-
ter-tryptone-yeast extract (SWT) agar medium (Boettcher and
Ruby 1990) and incubated for up to 8 days at either 2, 8, or 16°C.
From the time they first appeared and throughout their subsequent
growth, individual colonies were removed and their luminescence
was measured in a sensitive photometer (TD-20/20 Luminometer;
Turner Designs, Sunnyvale, Calif., USA) either with or without
exposure to fumes of decyl aldehyde (Sigma-Aldrich, St. Louis,
Mo., USA).

Luciferase enzyme kinetics

Luciferase activity was assayed in vitro as described previously
(Nealson 1978), with the exception that reactions were performed
at 24°C rather than at 30°C. Briefly, several colonies from over-
night cultures grown on SWT agar plates were placed into separate
Eppendorf tubes containing 1.0 ml cold lysis buffer (10 mM Na
EDTA, pH 7.5; 1 mM dithiothreitol); the cell suspension was vor-

texed and then incubated on ice for 20 min. Twenty-microliter
aliquots of each of the resulting cell lysates were then added to
separate 5-ml glass vials containing 10 µl 0.01% dodecyl aldehyde
(Sigma-Aldrich) suspension in 10 mM potassium phosphate buffer
(pH 7.1). The vials were placed into a light-tight photometer cham-
ber, and 1 ml of a 50 µM solution of FMNH2 was injected into
each. The resulting level of light emission was continuously
recorded on a strip chart recorder, and the values at intervals of 1 s
were plotted to calculate the enzyme turnover kinetics from the
rate of decay of luminescence.

Luminescence induction in the presence of added aldehyde

Five strains of V. salmonicida were inoculated separately into each
of two sets of flasks containing either SWT broth or a V. harveyi-
conditioned SWT broth (VHCM). VHCM was prepared as de-
scribed previously (Makemson 1973) to remove an inhibitor of lu-
minescence induction. The flasks were shaken at either 8 or 16°C,
and aliquots were taken throughout growth of the culture and mea-
sured for both optical density (OD) at 600 nm and luminescence.
The luminescence measurements were made both with and without
exposure to a final decyl aldehyde concentration of 50 ng/ml
which was added at the time of measurement.

Effect of the addition of VAI-1 on luminescence induction

Cells of either V. fischeri strain ES114, V. logei strain SR6, or 
V. salmonicida strain NCMB 2262 were grown to an OD600 of
0.2–0.4, and were then diluted to a final OD600 of 0.01–0.04 in
flasks containing 15 ml SWT broth. This procedure reduces carry-
over of any intrinsic autoinducer activity that the cells may have
secreted into the growth medium. The cultures were grown with
shaking at 16°C (the upper temperature limit at which these strains
might be expected to coexist in nature), and the OD600 and lumi-
nescence (either with or without added decyl aldehyde) of culture
aliquots were measured periodically. In some cases, the medium
was supplemented with VAI-1 (Sigma-Aldrich) to a final concen-
tration of 2.4–240 ng/ml. Cells of V. salmonicida were also ex-
posed to VAI-1 at a final concentration of 2 µg/ml because lower
concentrations of VAI-1 were not able to induce them to luminesce
without the addition of aldehyde. These cells were grown to an
OD600 of 0.8 and were then diluted to a final OD600 of 0.01–0.04 in
15 ml SWT broth, after which they remained luminous when ex-
posed to aldehyde.

Effect of the addition of V. salmonicida spent-culture extract 
on the luminescence induction of V. fischeri ES114

V. salmonicida spent-culture extract was prepared as described by
Nealson (1977). Briefly, strain NCMB 2262 was grown to a den-
sity of 2.9 × 108 cells/ml, and 1 l cell-free spent medium was ex-
tracted with ethyl acetate and concentrated to a volume of 3.0 ml.
The extract should contain any VAI-1-like acyl-HSL autoinducer
produced by V. salmonicida. V. fischeri cells were grown to an
OD600 of 0.4 and were then diluted to an OD600 of 0.05 in 15 ml
VHCM that contained an ethyl acetate extract from an equivalent
of 15 ml of a V. salmonicida culture at an OD600 of 4.8. Prior 
to adding the medium, the ethyl acetate solvent was allowed to
evaporate completely, leaving any acyl-HSL produced by the 
V. salmonicida cells. V. fischeri cells were then grown with shak-
ing at their temperature optimum (28°C), and the OD600 and lumi-
nescence (both with and without added decyl aldehyde) of culture
aliquots were measured periodically.

Results and discussion

V. salmonicida has not been previously described as being
a luminescent species; however, because of recent evi-
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Table 1 Luciferase enzyme decay kinetics of some bacterial
strains used in this study

Species Source, reference Luciferase in
vitro turnover
kinetics
(T1/2, in s)

Vibrio harveyi
B392 Seawatera 17

Vibrio logei
SA6 Sepiola affinis light organb 2.2
SR6 Sepiola robusta light organb 2.1

Vibrio fischeri
SA1 Sepiola affinis light organb 1.7
SR5 Sepiola robusta light organb 2.0
ES114 Euprymna scolopes light organc 0.7

Vibrio salmonicida
NCMB 2262 Diseased Atlantic salmond 2.0

a Reichelt and Baumann (1973)
b Fidopiastis et al. (1998)
c Boettcher and Ruby (1990)
d Egidius et al. (1986)



dence that the level of luminescence of V. logei is inhib-
ited at elevated growth temperatures (Fidopiastis et al.
1998), colonies of V. salmonicida were assayed for lumi-
nescence during growth within its psychrophilic tempera-
ture range (2–16°C). Colonies of V. salmonicida were not
detectably luminous over this entire range, either visibly
or by sensitive photometry. However, if the colonies were
exposed to decyl aldehyde, they immediately became vis-
ibly light-emitting, indicating that V. salmonicida is a lu-
minous bacterium that expresses a luciferase but not all
the cofactors normally required to produce light. Using an
in vitro enzyme assay on cell lysates, we confirmed that
the light was produced by a typical bacterial luciferase
that required FMNH2, O2, and an aliphatic aldehyde. Fur-
ther, analysis of luciferase enzyme decay kinetics (Table
1) revealed that the V. salmonicida activity grouped with
the “fast-kinetics” enzymes of V. fischeri and V. logei,
whose turnover rates are distinct from those of the slower
luciferases of V. harveyi and related species (Nealson
1978).

All five V. salmonicida strains that we examined in-
duced luminescence early in the exponential phase of
growth regardless of either the medium (SWT or VHCM
broth) or growth temperature (8 or 16°C) used, but in all
cases exogenous aldehyde was necessary to detect lumi-
nescence. Because V. salmonicida cells grow faster in
SWT (tgen ≅ 3 h at 16°C) than in VHCM (tgen ≅ 5 h at 
16°C) medium, and luminescence induction was similar
in all strains tested, cells of strain NCMB 2262 grown in
SWT broth were used in subsequent experiments.

Induction of luciferase could be detected in cultures of
V. salmonicida grown with or without added VAI-1 (Fig.1)
if aldehyde was added to an aliquot of the culture imme-
diately before placing the aliquot in a photometer. The ad-
dition of VAI-1 to growing cells of V. salmonicida in-
duced their luminescence approximately 100-fold above
the method’s detection limit. Nevertheless, the luciferase

of these cells apparently was still severely limited by their
inability to supply adequate substrate aldehyde. Thus, the
luminescence of VAI-1-induced V. salmonicida cells,
measured in the presence of added decyl aldehyde, in-
creased an additional 100-fold (Fig.1) to a level that is
comparable to fully induced V. fischeri ES114 cells.

The ability of V. salmonicida to respond to V. fischeri
autoinducer is consistent with these two species’ phyloge-
netic proximity (Wiik et al. 1995; Fidopiastis et al. 1998).
Similarly, the luminescence of the closely related species
V. logei can also be induced in the presence of VAI-1 (data
not shown), and V. logei has been shown to produce VAI-1
(E.P. Greenberg, University of Iowa, Iowa City, Iowa,
USA; personal communication). Thus, these three closely
related bacteria all respond to the same acyl-HSL auto-
inducer molecule. This finding is an example of how cells
of several closely related species that can co-occur in
nature might together act like a “quorum” of conspecific
cells (Greenberg et al. 1979; Bassler et al. 1997; Visick
and Ruby 1998).

Interestingly, the addition of VAI-1 apparently induced
aldehyde synthesis in V. salmonicida, resulting in light
emission (Fig.1); however, this effect was not detected
until approximately midway through exponential growth
(i.e., at an OD600 of 0.4). The apparent temporal differ-
ence in expression of luciferase and aldehyde synthesis
genes suggests that expression of these two sets of genes
in V. salmonicida is subject to different regulatory con-
trols.

Our work with V. salmonicida has led us to consider
the following question: what is the cellular consequence
of being a luminous bacterium that does not produce
light? A “dark” pathway, in which luciferase (in the ab-
sence of aldehyde) catalyzes only a partial reduction of O2
by FMNH2, results in essentially no light production and
leads to the formation of intracellular hydrogen peroxide
(Nealson and Hastings 1977; Gonzalez-Flecha and Dem-

207

Fig.1 Luminescence of Vibrio
salmonicida strain NCMB
2262 grown in the presence
(P, p) or absence (M, m) of
Vibrio fischeri autoinducer 
N-(3-oxo-hexanoyl)-L-ho-
moserine lactone. Light emis-
sion of culture aliquots was
measured at the indicated cul-
ture densities (OD values) 
either in the presence (P, M)
or in the absence (p, m) of
added decyl aldehyde. Essen-
tially the same results were ob-
tained when all five V. sal-
monicida strains were tested 
(1 luminescence unit [LU] =
1.7 × 103 quanta/s; the detec-
tion limit was 100 LU/OD)



ple 1994). Our results with V. salmonicida suggest that
this species may have significant dark-pathway activity in
the absence of exogenous aldehyde, and thus might be
subjecting itself to oxidative stress. Interestingly, V. sal-
monicida appears to counteract this potentially growth-
limiting oxidative stress by producing unusually abundant
levels of catalase activity, which could be readily detected
when a drop of hydrogen peroxide was added to isolated
colonies on an agar surface (data not shown).

Ethyl acetate extracts of spent V. salmonicida medium
enhanced specific luminescence in growing cultures of 
V. fischeri ES114, a natural underproducer of VAI-1
(Boettcher and Ruby 1990; Gray and Greenberg 1992), on
the average approximately tenfold (Fig.2). This effect
suggests that V. salmonicida produces a functional acyl-
HSL autoinducer that can augment the luminescence in-
duction effect of the endogenously produced autoinducer(s)
(Kuo et al. 1994) of strain ES114. However, while addi-
tion of V. salmonicida culture extract to cells of V. sal-
monicida enhanced their level of luminescence up to
threefold (data not shown), the enhancement by exoge-
nous aldehyde remained, suggesting that V. salmonicida
cells do not produce in culture an acyl-HSL that can fully
induce sufficient aldehyde synthesis activity. Interest-
ingly, among the three Vibrio species tested, the lowest
OD600 at which luminescence was induced occurred at
different levels of added VAI-1 (Table 2). This observa-
tion suggests that (1) the structure of VAI-1 may be dif-
ferent from that of the acyl-HSL(s) naturally produced by
V. logei and V. salmonicida, and/or (2) these species may
have acyl-HSL receptor proteins (LuxR homologues)
with lower affinities for VAI-1 than does V. fischeri LuxR.

In summary, we have demonstrated that V. salmonicida
(1) produces a typical bacterial luciferase with decay ki-
netics similar to those of light-organ symbionts of squids
and fishes, (2) possesses the intrinsic ability to synthesize

aldehyde, (3) can induce both luciferase and aldehyde
synthesis genes in the presence of the acyl-HSL VAI-1,
(4) produces an autoinducer activity that only slightly in-
duces its own luciferase gene expression and does not de-
tectably induce aldehyde synthesis, and (5) secretes an 
activity that can induce luminescence in cultures of 
V. fischeri. Both the precise organization and regulation of
lux genes in V. salmonicida and their significance to the
ecology of this bacterium remain to be revealed. V.
salmonicida is typically found as a pathogen associated
with decaying wound tissue of fishes (Sørum et al. 1988)
and may produce hydrogen peroxide as a means of caus-
ing host tissue damage, as has been reported for patho-
genic mycoplasmas (Razin 1986). We speculate that the
suppression of light emission in V. salmonicida and the
subsequent formation of hydrogen peroxide that may oc-
cur in the absence of an externally provided organic alde-
hyde could be a significant clue to its mechanisms of vir-
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Table 2 Representative results of three experiments to determine
the effect of Vibrio fischeri autoinducer N-(3-oxo-hexanoyl)-L-ho-
moserine lactone (VAI-1) addition on the optical density (OD600)
at which luminescence is induced. Each strain was grown with
shaking at 16°C in seawater-tryptone-yeast extract medium, and
culture OD600 and luminescence were monitored. For Vibrio
salmonicida only, decyl aldehyde (50 ng/ml) was added immedi-
ately before luminescence was measured. The lowest OD600 at
which the specific activity of luminescence began to increase is re-
ported as the point of induction

Strain Optical density at induction

Concentration of added VAI-1 (ng/ml)
0 2.4 24 240

Vibrio fischeri ES114 > 0.6 0.04 0.04 0.04
Vibrio logei SR6 0.8 0.15 0.06 0.04
Vibrio salmonicida 2262 0.4 0.4 0.12 0.12

Fig.2 Luminescence of Vibrio
fischeri ES114 cells grown in
seawater-tryptone-yeast extract
medium either with (P) or
without (p) the addition of an
ethyl acetate extract of Vibrio
salmonicida spent-culture me-
dium (1 luminescence unit
[LU] = 1.7 × 103 quanta/s; 
the detection limit was 
100 LU/OD)



ulence and perhaps even to the functional evolution of
bacterial luciferase.
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	The value of natural experimental models
	Abstract | The recent development and application of molecular genetics to the symbionts of invertebrate animal species have advanced our knowledge of the biochemical communication that occurs between the host and its bacterial symbionts. In particular, the ability to manipulate these associations experimentally by introducing genetic variants of the symbionts into naive hosts has allowed the discovery of novel colonization mechanisms and factors. In addition, the role of the symbionts in inducing normal host development has been revealed, and its molecular basis described. In this Review, I discuss many of these developments, focusing on what has been discovered in five well-understood model systems.
	Figure 1 | Microbial symbioses occur throughout the phylogeny of animals. Experimentally accessible associations, including several that are described in this Review, occur in all the main phylogenetic groups. These associations span the breadth of animal diversity, and are represented in cellular-grade, tissue-grade and organ-grade levels of developmental and morphological complexity.
	Examples of beneficial symbioses
	Figure 2 | Classes of symbiosis models. Experimental models of microbial symbioses can be characterized into three types. Gnotobiotic systems (a) have been useful for examining the interactions within the complex consortia that are normally present in vertebrate enteric tracts. In these systems, germ-free host animals are produced, and one or a few bacterial species are introduced to allow an examination of a simplified relationship. An alternative approach is to investigate consortia of invertebrates (b), which are often simpler in species composition. Finally, there are several natural animal models (c) in which only a single bacterial species is present.
	Box 1 | Valuable characteristics in a genetic model of symbiosis
	Application of molecular genetics
	Table 1 | Examples of Nobel Prize awards in developmental biology*
	Figure 3 | Simplified life cycles of five symbioses. In each of the symbioses shown, the animal obtains a specific symbiont (or symbionts), which colonizes the host in a particular location. a | The squid obtains its symbionts from sea-water populations, which colonize the nascent light organ. b | The nematode brings its symbiont into the insect host, where both proliferate. The bacteria then recolonize the nematodes, which escape from the carcass. c | Juvenile leeches obtain symbionts after hatching from their cocoon (perhaps from the cocoon itself). They then take up residence in the crop, where they digest the blood meal. d | The tsetse fly can either pass the symbionts maternally to the eggs or pick up new strains from the environment. Specific symbionts on the food of the fruit fly colonize and persist in the enteric tract.
	Figure 4 | Categories of colonization mutants. Microbial symbionts that are passed horizontally must negotiate several stages of the colonization process. Studies of genetically engineered mutant strains have revealed defects that can be placed in one of several classes. In this example, inoculation with a wild-type strain from the environment allows a few symbionts to colonize, which grow to a specific population size that is then stably maintained over time. Three broad classes of defects have been discovered in several symbiotic systems: initiation mutants, which are unable to inoculate the host; accommodation mutants, which fail to reach the usual population size; and persistence mutants, which at first colonize normally, but are unable to maintain themselves.
	Table 2 | Genetic tools and resources for certain bacterial symbionts*
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