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LitR, a new transcriptional activator in Vibrio 
fischeri, regulates luminescence and symbiotic 
light organ colonization

Introduction

An increasing awareness of the role that benign bacterial
associations play in the normal development and health
of animals has driven an interest in the mechanisms 
by which a host initially obtains and subsequently main-
tains its specific bacterial symbionts (McFall-Ngai, 1999;
Hooper and Gordon, 2001). Within hours of hatching,
juveniles of the squid Euprymna scolopes acquire within
the epithelium-lined crypts of their nascent light organ 
a monospecific population of the luminous bacterium 
Vibrio fischeri. This symbiotic infection initially stabilizes
at a level of about 5 ¥ 105 cells, but eventually reaches
about 109 cells in the fully grown adult (Ruby and Asato,
1993). Within the crypt spaces of the light organ, V. 
fischeri cells induce their lux genes, which results in the
emission of a bright luminescence that is believed to
assist the squid in its nocturnal activities (McFall-Ngai,
1990). During the first few hours to days following this
benign infection, a number of morphological changes
occur in the polarized epithelial cells lining the light organ
crypts, e.g. both the volume and the microvillar density of
the cells increase fourfold, and they become more
cuboidal in shape (McFall-Ngai, 1994; Lamarcq and
McFall-Ngai, 1998). These changes are triggered only in
the presence of V. fischeri cells and presumably enhance
the intimacy of the symbionts with one another and with
the crypt epithelium.

The light organ is a dynamic environment for the bac-
teria: each morning, about 95% of the V. fischeri popula-
tion is vented into the surrounding sea water, leaving the
remaining 5% to repopulate the organ by the subsequent
nightfall (Lee and Ruby, 1994a). The ability to induce this
venting behaviour experimentally has facilitated morpho-
logical and biochemical analyses of the light organ con-
tents (Graf and Ruby, 1998; Nyholm and McFall-Ngai,
1998). Graf and Ruby (1998) concluded that the dense
material surrounding the bacteria within the crypts con-
sists largely of peptides that are capable of supporting the
growth of auxotrophic mutants of V. fischeri. In addition,
before entering the external pores that lead into the
crypts, V. fischeri cells in the ambient sea water must
aggregate on and move through a mucous matrix pro-
duced by the host (Nyholm et al., 2000).

Recent results have begun to identify bacterial activi-
ties such as catalase and bioluminescence that are
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Summary

Vibrio fischeri is the bacterial symbiont within the
light-emitting organ of the sepiolid squid Euprymna
scolopes. Upon colonizing juvenile squids, bacterial
symbionts grow on host-supplied nutrients, while
providing a bioluminescence that the host uses
during its nocturnal activities. Mutant bacterial
strains that are unable to emit light have been shown
to be defective in normal colonization. A 606 bp open
reading frame was cloned from V. fischeri that
encoded a protein, which we named LitR, that had
about 60% identity to four related regulator proteins:
Vibrio cholerae HapR, Vibrio harveyi LuxR, Vibrio
parahaemolyticus OpaR and Vibrio vulnificus SmcR.
When grown in culture, cells of V. fischeri strain
PMF8, in which litR was insertionally inactivated,
were delayed in the onset of luminescence induction
and emitted only about 20% as much light per cell as
its parent. Protein-binding studies suggested that
LitR enhances quorum sensing by regulating the 
transcription of the luxR gene. Interestingly, when
competed against its parent in mixed inocula, PMF8
became the predominant symbiont present in 83% of
light organs. Thus, the litR mutation appears to rep-
resent a novel class of mutations in which the loss of
a regulatory gene function enhances the bacterium’s
competence in initiating a benign infection.
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required for successful colonization and/or the initiation 
of host development (Visick and McFall-Ngai, 2000). 
Preliminary evidence (Fidopiastis and Ruby, 1999) has
suggested that V. fischeri produces an extracellular pro-
teolytic activity similar to that exhibited by the Vibrio
cholerae Hap (Finkelstein et al., 1983), Vibrio vulnificus
Vvp (Nishina et al., 1992) or Vibrio anguillarum EmpA
(Garcia et al., 1997) proteins. This activity might allow
symbiosis-competent cells of V. fischeri to (i) move
through the mucous barrier outside the light organ pores
(Nyholm et al., 2000) and/or (ii) gain access to host-
derived peptides in the crypts (Graf and Ruby, 1998). The
expression of all three of these other Vibrio spp. proteases
has been shown to be dependent on TetR family regula-
tor proteins [i.e. HapR (Jobling and Holmes, 1997); SmcR
(McDougald et al., 2001; Shao and Hor, 2001); and VanT
(Milton et al., 1999) respectively]. In addition, two other
homologues have been described: OpaR, which controls
colony opacity in Vibrio parahaemolyticus (McCarter,
1998), and LuxR, which is required for luminescence in
Vibrio harveyi (Showalter et al., 1990). To date, there have
been no reports of a homologous regulatory protein in V.
fischeri. To understand better the control of both protease
activity and luminescence in V. fischeri, and to examine
how these activities might be modulated in the symbiosis,
we searched for a gene that might encode a member of
this family of regulators.

We report here the discovery in V. fischeri of litR, a gene
that encodes a protein with high sequence identity to 
the other TetR family transcriptional regulators present 
in Vibrio spp. Its product, designated LitR, not only has

functional characteristics that are like those reported for
some of the other homologues, but also an unexpected
activity. Specifically, we provide evidence that LitR is
important for the normal induction of luminescence, and
also plays a novel role in modulating the ability of V. 
fischeri to colonize juvenile squid.

Results

Homology of litR to other regulatory proteins 
in Vibrio species

Using degenerate primers based on highly conserved
coding regions between the V. cholerae hapR and the 
V. harveyi luxR gene sequences, a 255 bp product was
amplified from eight strains of V. fischeri isolated from
diverse sources, as well as from two Vibrio logei strains
(Fig. 1). No product was obtained from the slightly more
distantly related species Photobacterium profundum SS9.
The peptide encoded by the polymerase chain reaction
(PCR) product from V. fischeri strain ES114 was 67%
identical to that encoded by the corresponding region of
V. cholerae hapR. Using this PCR product as a probe, the
complete litR gene was detected within a 12 kb EcoRI
fragment of V. fischeri strain ES114 genomic DNA
and further localized to a 3 kb SacI–ClaI fragment. The 
3 kb fragment was sequenced, and a putative ribo-
some-binding sequence ‘AAGGA’ was detected 9 bases
upstream of the start of the predicted open reading frame
(ORF); however, we did not find consensus -35
(TTGACC) or -10 (TACACT) sequences to be present in
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Fig. 1. PCR amplification of a fragment of 
a V. cholerae hapR homologue from strains 
of V. fischeri and V. logei. PCR primers
recognizing V. cholerae hapR sequences
were mixed in a PCR with genomic DNA from
a number of strains, and a product of the
indicated size was amplified. V. logei MdR16
and MdRD are sea-water isolates from
southern California; V. fischeri EM17 and
EM24 are light organ symbionts of Euprymna
morsei (Ruby and Asato, 1993); V. fischeri
ES114 and ES401 are light organ symbionts
of Euprymna scolopes (Boettcher and 
Ruby, 1994); V. fischeri H905 and H906 are
sea-water isolates from Kaneohe Bay, Hawaii
(Lee and Ruby, 1994); V. fischeri MJ1is a light
organ symbiont of Monocentris japonica
(Ruby and Nealson, 1976); and P. profundum
SS9 is a deep-ocean sea-water isolate
(Welch and Bartlett, 1998).
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the same location as the promoter regions of hapR, luxR,
opaR and smcR (Shao and Hor, 2001).

The litR sequence aligned across its entire coding
region with the sequences of hapR, luxR, opaR and
smcR. In addition, partial sequences of the ORFs flank-
ing litR shared significant (>80%) identity to the hpt (5¢ of
litR) and lpd (3¢ of litR) genes of V. parahaemolyticus. The
litR gene encodes a 201-amino-acid protein that shares
significant identity (58–60%) with HapR, V. harveyi LuxR,
V. parahaemolyticus OpaR and V. vulnificus SmcR (Fig.
2). The amino-terminal domain residues (numbers 6–69)
share particularly high identity, with over 90% conserved
in the other homologues. In addition, this region showed
significant conservation when compared with a con-
sensus sequence derived from the helix–turn–helix 
(HTH) DNA-binding domain of genes in the TetR family 
of negative transcriptional regulators. A phylogenetic 

comparison of the amino acid sequences of the homo-
logues revealed them all to be within the TetR family of
regulatory proteins (Fig. 3). LuxR, OpaR and SmcR form
the most closely related grouping, whereas LitR appeared
to have branched off earliest during the evolution of the
Vibrio clade of TetR proteins.

Luminescence defect in the litR mutant strain PMF8

The growth rates of ES114 and PMF8 were essentially
the same when cells were cultured in SWT medium at
28∞C, and PMF8 grew only slightly more slowly at 22∞C
(data not shown). Interestingly, under either of these
growth conditions, PMF8 produced no detectable lumi-
nescence until the culture reached an optical density (OD)
at 600 nm of >1.2. In contrast, the parent strain ES114
always induced luminescence at or before an OD of 1.0
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Fig. 2. Amino acid sequence alignment of LitR homologues. Residues that are conserved in all the five proteins are marked with an asterisk.
Residues that are encoded by the nucleotides used to construct the degenerate PCR primers are underlined. Numbering refers to the residue
order in the HapR molecule.



(Fig. 4). Subsequently, the level of luminescence (per cell)
emitted by PMF8 remained <20% that of ES114. This phe-
notypic defect could be relieved by the addition of a wild-
type copy of either litR or V. harveyi luxR carried in trans
(Table 1). These data confirm that litR is responsible for
the luminescence defect, and that V. harveyi luxR can not
only functionally complement the litR mutation but also,
on a multicopy plasmid, leads to a level of luminescence
expression that was even greater than that produced by
the wild-type strain. In contrast, the presence of pMF2,
which encodes a wild-type copy of litR, could not restore
luminescence to a V. harveyi luxR mutant (data not
shown).

Regulation of luminescence by LitR enhancement of 
V. fischeri luxR expression

To determine how the litR::Kan mutation results in a
depression of the onset of light emission, we first asked
whether the normal pattern of luminescence could be

restored by the addition of either the aliphatic aldehyde
decanal (a substrate of the luciferase reaction) or the V.
fischeri quorum-sensing autoinducer 3-oxo-hexanoyl
homoserine lactone (VAI-1). Supplementing cultures with
decanal did not fully restore luminescence of PMF8 to the
levels emitted by the wild type, ES114 (Fig. 4). Instead,
the addition of aldehyde stimulated luminescence pro-
portionally, with PMF8 cells continuing to emit on average
<20% of the luminescence of ES114 cells. Similarly,
although the addition of VAI-1 greatly enhanced light
emission of both PMF8 and ES114, it did not fully restore
PMF8 luminescence to the level emitted by strain ES114
grown in the presence of VAI-1 (Fig. 5). In fact, when com-
pared with the wild-type parent, the absence of a func-
tional litR resulted in a significant delay in the response
of PMF8 to either VAI-1 (Fig. 5) or VAI-1 and aldehyde
together (data not shown). We interpreted these data 
to suggest that this small but reproducible difference 
indicates that the mutant litR allele does not act simply
through a direct effect on the levels of either of these 
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Fig. 3. Phylogenetic tree constructed from the
amino acid sequences of LitR and five of its
homologues using the neighbour-joining
method (Saitou and Nei, 1987). The
homologues are found in V. harveyi (LuxR), 
V. parahaemolyticus (OpaR), V. vulnificus
(SmcR), V. cholerae (HapR), V. fischeri (LitR)
and Salmonella enterica (TetR). Calculated
evolutionary distances are based on the 
‘p-distance’ or the proportion of amino acid
sites at which two sequences differ. The bar
indicates a p-distance of 0.1.

Fig. 4. Luminescence patterns of cells of 
V. fischeri strain ES114 (squares) and strain
PMF8 (circles), with (open symbols) or
without (closed symbols) exposure to decanal.
At regular intervals, an aliquot of each culture
was removed and measured for both OD and
luminescence. Decanal was then added to the
aliquot, and the level of luminescence was
remeasured. One luminescence unit equals
1.3 ¥ 104 quanta s-1 ml-1. Similar data were
obtained in two other experiments.
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components of the luminescence system in V. fischeri.
Instead, these data were consistent with the notion that
the wild-type allele of litR enhances expression of the V.
fischeri luxR gene (note that although they have the same
gene name, V. fischeri luxR and V. harveyi luxR, the 
V. fischeri litR homologue, encode completely unrelated 
proteins). We reasoned that, by increasing the basal level
of the V. fischeri LuxR, the presence of a functional LitR
might lead to a more rapid induction of luminescence in
response to added VAI-1. In support of this hypothesis,
expression of litR in trans led to a four- to fivefold increase
in the expression of b-galactosidase from the V. fischeri
luxR promoter (Table 2) when assayed in an Escherichia
coli strain carrying pJE455 (luxR::lacZ). No such
enhancement by LitR of the expression of the luxICDABE
operon was noted by a similarly constructed luxC::lacZ
fusion (Table 2). Furthermore, mobility shift analyses indi-
cated that LitR binds to a 427 bp BstBI–PvuII fragment
that includes the 5¢ region of the luxR coding sequence
and the complete luxR promoter region (Fig. 6).

Other phenotypes affected by the litR mutation

Colonies of V. fischeri ES114 grown on SWT agar medium
are normally golden yellow and opaque. In contrast,
colonies of PMF8 are almost entirely translucent, except
for a slight opacity in the centre of the colony. This appear-
ance is similar to that reported for colonies of an SmcR
mutant strain of V. vulnificus (Shao and Hor, 2001). These

findings suggest that litR, like opaR (McCarter, 1998),
hapR (Jobling and Holmes, 1997) and smcR (Shao and
Hor, 2001), may also control opacity. Opacity has also
been associated with the ability of V. vulnificus to produce
siderophores (Reddy et al., 1992). However, PMF8
showed no defect in its ability to sequester iron on CAS
agar when compared with the parent strain (data not
shown).

The litR homologues hapR and smcR have been
reported to control protease production in V. cholerae
(Jobling and Holmes, 1997) and V. vulnificus (McDougald
et al., 2001; Shao and Hor, 2001) respectively. However,
we were unable to detect any alteration in either protease
or mucinase activities in strain PMF8 (data not shown).
The protease activities of PMF8 and ES114 were equiv-
alent, and both were reduced to undetectable levels 
by the addition of Zincov, suggesting that the major
detectable extracellular agent of proteolysis in each of
these strains is a zinc-requiring metalloprotease(s). Fur-
thermore, overexpression of litR in a strain of E. coli car-
rying a hap promoter that controlled lacZ expression did
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Fig. 5. Luminescence patterns of cells from V. fischeri strain
ES114 (circles) and strain PMF8 (squares), grown in the presence
(open symbols) or absence (closed symbols) of added VAI-1. One
luminescence unit equals 1.3 ¥ 104 quanta s-1 ml-1.

Table 1. Complementation of the luminescence defect in PMF8.

Luminescence
Strain (with complementing plasmid) units per ODa

ES114 (litR +) 3.5
PMF8 (litR -) <0.1
PMF8 (with pMF2; litR +) 30
PMF8 (with pVO8b) <0.1
PMF8 (with pMGM150; luxR +c) 40

a. Measurements made on cultures at an OD of 1.0; one lumines-
cence unit equals 1.3 ¥ 104 quanta s-1 ml-1.
b. pVO8 is the parent vector of pMF2.
c. V. harveyi luxR.

Table 2. litR-enhanced expression of b-
galactosidase from a V. fischeri luxR promoter–
reporter.

Test plasmid Reporter plasmid b-Galactosidase expressiona

(None) pJE455 (luxR::lacZ ) 7
pMF7 (litR -; vector control) pJE455 (luxR::lacZ ) 3
pMF2 (litR +) pJE455 (luxR::lacZ ) 121

(None) pJE413 (luxC::lacZ ) 7
pMF7 (litR -; vector control) pJE413 (luxC ::lacZ ) 8
pMF2 (litR +) pJE413 (luxC ::lacZ ) 9

a. Fluorescence units per OD unit (5 ¥ 108 cells) above background; values are representa-
tive of three independent experiments.



not result in the induction of b-galactosidase activity (data
not shown). Taken together, these data suggest that a
mutation in litR does not affect protease production in V.
fischeri, and that litR is not a functional homologue for this
activity of hapR. In addition to its potential role in protease
regulation, smcR may also negatively regulate motility
(McDougald et al., 2001). However, PMF8 and ES114
were equally motile when assayed in semi-solid agar
(data not shown).

Characterization of light organ colonization by the 
litR mutant

The three criteria of efficiency, extent and competitiveness
were used to assess the ability of the litR mutant to 

colonize the juvenile squid light organ. The colonization
efficiency of strain PMF8 at low cell inocula was indistin-
guishable from its parent; that is 100% of juveniles
became infected when they were exposed to sea water
containing either strain at concentrations as low as 400
cells ml-1 (data not shown). Interestingly, although there
was a 1 h delay in the onset of detectable luminescence,
the levels of light emitted by these squids at 12, 24 and
48 h after infection were equivalent for both strains. These
results indicated that the mutant was able to reach an
essentially fully induced state in the light organ, even
without a functioning litR gene.

The second criterion examined was the size of the 
symbiont population attained by each strain. At 24 h 
after infection, the average number of cfus present in 
light organs colonized by the parent strain (2.3 ± 0.7 ¥
105) was not significantly different from the number in
mutant-colonized animals (1.7 ± 0.5 ¥ 105). This similar-
ity was observed in the symbiotic populations of light
organs after 48 h as well.

Thirdly, we determined whether either the parent or the
mutant strain was able to outcompete the other when they
simultaneously colonized the same light organ. Forty-
eight hours after exposure of 21 juvenile squids to sea
water containing a 1:1 mixture of ES114 and PMF8 cells,
the litR mutant was the predominant symbiont isolated
from 18 (86%) of the light organs (Fig. 7). In a second
experiment, the mutant again outcompeted its parent in
79% (11 out of 14) of the juvenile squid (data not shown).
Thus, not only can the litR mutant colonize the juvenile
light organ as well as the wild-type strain, but it also
expresses a competitive advantage during at least the
first 48 h after infection. Because neither strain exhibited
a growth advantage when competed against the other in
a mixed inoculum of SWT medium, some condition(s)
specific to the light organ environment is apparently
responsible for eliciting the differential effect.

Discussion

During colonization of host tissue, the expression of sets
of bacterial genes can be under the control of specific
transcriptional regulators (Cotter and DiRita, 2000).
Although most of these regulators have been described
in bacteria that initiate pathogenic infections, a few have
been found to play a role in the more commonly occur-
ring phenomena of benign bacterial colonization (van
Rhijn and Vanderleyden, 1995; Graf and Ruby, 2000). 
We report here a gene encoding such a regulator in the
symbiotic luminous bacterium V. fischeri. This gene, 
designated litR, is a member of a family of genes found
in at least five other Vibrio species that are animal
pathogens (Showalter et al., 1990; Jobling and Holmes,
1997; McCarter, 1998; Milton et al., 1999; McDougald 
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Fig. 6. Localization of the LitR binding site in the lux operon
promoter region by mobility shift analysis.
A. An AflIII fragment encompassing the luxR–luxI intergenic region
was isolated, digested with either BstBI or BstBI and PvuII and
labelled with [32P]-dCMP.
B. The resulting DNA fragments were mixed with purified LitR
(lanes 1 and 4, no LitR added; lanes 2 and 5, 0.6 mg of LitR 
added; lanes 3 and 6, 0.8 mg of LitR added) in the presence of
poly-(dI–dC)/poly-(dI–dC) competitor DNA and subjected to
electrophoresis in a 5% polyacrylamide gel. The migration of the
735 bp (but not the 236 bp) DNA fragment (lanes 2 and 3), as well
as that of the 427 bp (but not the 236 or 308 bp) DNA fragment,
apparently bound LitR and was retarded. A small amount of 663 bp
fragment, probably resulting from incomplete digestion by BstBI, is
visible in lane 4.
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et al., 2000). Our studies with a litR mutant strain of V. 
fischeri have resulted in two discoveries: (i) a new level at
which luminescence is regulated in this species; and (ii) a
novel genotype that increases symbiotic competency.

Genetic analysis of the litR gene locus has revealed
that it is flanked by gene homologues of hpt (upstream)
and lpd (downstream); these two genes also flank 
V. parahaemolyticus opaR and V. vulnificus smcR, 
and occur in the same orientation (McCarter, 1998;
McDougald et al., 2000). The hpt gene is also found
upstream of V. cholerae hapR and V. harveyi luxR, but
the downstream flanking genes in each of these species
are not related either to lpd or to each other (Jobling 
and Holmes, 1997). LitR shares about 60% identity to 
V. harveyi LuxR, V. cholerae HapR, V. parahaemolyticus
OpaR and V. vulnificus SmcR. A comparison of the amino
acid sequence of these homologues revealed several
regions of particularly high identity, including the consen-
sus HTH DNA-binding domain characteristic of the TetR
family of negative transcriptional regulators (PROSITE
accession number PS01081). Taken together, these 
similarities suggest that the homologues are derivatives
of an ancestral gene that was acquired before these
Vibrio species diverged (Fig. 3).

The high sequence similarity of these regulators sug-
gested that they might be able to complement each other
genetically. Previous work has shown that V. harveyi LuxR
and V. cholerae HapR are functionally interchangeable
(Jobling and Holmes, 1997) and, when carried in trans,
either OpaR or SmcR could activate the expression of the
V. harveyi lux operon in E. coli (McCarter, 1998). In the
work reported here, expression of V. harveyi LuxR in trans
alleviated the luminescence deficiency of strain PMF8
(Table 1). In contrast, expression of LitR in trans did not
similarly restore luminescence to either V. harveyi strain
MR1130 (luxR-) or an E. coli strain carrying plasmid

pRS205 (V. harveyi luxR-; luxCDABE+); in fact, cell growth
was severely inhibited in transconjugants of both these
strains (data not shown). These results are consistent with
previous reports (Chatterjee et al., 1996), in which over-
expression of V. harveyi luxR in certain strains of V.
harveyi and E. coli produced a cytotoxic affect, and sug-
gested possible gene dosage effects on other unknown
genes.

In most cases, the litR gene homologues in Vibrio
species encode a protein that controls the expression of
one or more phenotypes believed to be important in the
successful colonization of animal tissue (e.g. motility, 
protease secretion, siderophore production, etc.). Inter-
estingly, although there is some overlap in these pheno-
types, the particular set of regulated genes is distinct in
each species. In V. fischeri, a litR mutant has two distinct
phenotypes in culture: (i) diminished luminescence,
similar to but not as great as that of a V. harveyi luxR
mutant (Martin et al., 1989); and (ii) reduced colony
opacity, like that of a V. parahaemolyticus opaR mutant
(McCarter, 1998).

The structure and regulation of the luminescence (lux)
genes of V. fischeri have been the subjects of extensive
investigation for over 25 years (Nealson, 1999). These
genes are arranged as two divergent operons, with luxI-
CDABE comprising the rightward operon, and luxR (not a
homologue of V. harveyi luxR) comprising the leftward
operon (Engebracht and Silverman, 1987). The luxI
product encodes the synthase of the primary V. fischeri
autoinducer (VAI-1). The luxC, luxD and luxE genes
encode products necessary to synthesize an aliphatic
aldehyde, a substrate for luciferase. The a and b subunits
of luciferase are encoded by luxA and luxB respectively.
In the intergenic sequence between luxR and luxI is a 
regulatory region of about 150 bp that contains a 20 bp
inverted repeat (called the lux box), to which V. fischeri
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Fig. 7. Competition between the wild-type 
V. fischeri symbiont ES114 and its derivative,
the litR mutant PMF8, during colonization of
juvenile squid light organs. Twenty-one newly
hatched squid were exposed to a mixed
inoculum containing equal cell numbers of
each strain. Forty-eight hours after the initial
exposure to the bacterial inoculum, squid light
organs were homogenized, and dilutions were
spread on SWT agar medium. The ratio of
mutant to parental bacterial strain in each
light organ is expressed as the relative
competitive index (RCI) and is indicated by a
circle. Circles with an arrow indicate an RCI
of >100. An RCI above 1.0 indicates that the
litR mutant cells were competitively dominant.



LuxR binds when it is conjugated with VAI-1. The result
of this binding is an enhanced transcription of the right-
ward operon and a concomitant induction of lumines-
cence emission (Devine et al., 1989). LuxR and VAI-1
comprise the primary regulatory components modulating
luxICDABE expression (Sitnikov et al., 1995) and are
required for the normal cell density-sensing luminescence
response exhibited by V. fischeri in the squid light organ
(Visick et al., 2000).

The V. harveyi LuxR protein does not use a quorum-
sensing cofactor in its regulation of luminescence gene
expression, although a V. harveyi autoinducer has been
reported to enhance the transcription of V. harveyi luxR
itself (Miyamoto et al., 1996). We propose a similarly
direct mechanism to explain the regulation of lumines-
cence by V. fischeri LitR. Mobility shift studies presented
here support this hypothesis by identifying a region in 
the V. fischeri lux operon to which LitR can bind (Fig. 6).
This region is located within a 427 bp BstBI–PvuII DNA
sequence that encompasses a portion of the 5¢ end of V.
fischeri luxR as well as 70 bp of the luxR promoter region:
the lux box is not included in this apparent LitR binding
region (Fig. 6). Activation of the expression of a pro-
moterless b-galactosidase gene fused to the V. fischeri
luxR promoter (but not one fused to luxC) further indicated
that LitR not only bound a region of DNA within the luxR
promoter, but was also a positive regulator of that pro-
moter’s activity. It is important to note that LitR may have
other more complex regulatory roles in V. fischeri: LitR
homologues have been reported to express dual positive
and negative regulatory roles for both luminescence
control by V. harveyi LuxR (Chatterjee et al., 1996) and
the modulation of protease (positive) and cytolysin (nega-
tive) expression by V. vulnificus SmcR (Shao and Hor,
2001).

Taken together, the following evidence supports a
model in which LitR plays its greatest role in lumines-
cence induction as a transcriptional activator of V. fischeri
LuxR: (i) PMF8 is delayed in luminescence induction and
reduced in luminescence level; (ii) this defect in lumines-
cence behaviour was not fully alleviated by additions of
aldehyde and/or VAI-1; (iii) LitR was able to bind a region
of DNA that encompassed the V. fischeri luxR promoter;
and (iv) LitR activated expression of a reporter gene that
was controlled by a V. fischeri luxR promoter fusion. As a
result of LitR activating luxR expression, LuxR becomes
available to bind to VAI-1 and induce the expression of
luxICDABE. When the ambient concentration of VAI-1
reaches a critical level, this mechanism for sensing cell
density will dramatically induce the level of light produc-
tion (Nealson, 1977).

In addition to the role in luminescence regulation played
by both V. fischeri LitR and V. harveyi LuxR (Showalter 

et al., 1990), defects in protease activity, motility and/or
siderophore production have also been associated with
mutations in LitR homologues from several other Vibrio
species (Reddy et al., 1992; Jobling and Holmes, 1997;
McDougald et al., 2001). However, although V. fischeri
cells normally express all these latter activities, a litR
mutation apparently affects none of them. In contrast, LitR
does seem to be involved in a fourth associated pheno-
type, the regulation of opacity; i.e. colonies of PMF8 were
noticeably less opaque than those of the parent strain. 
In V. cholerae (Jobling and Holmes, 1997), V. para-
haemolyticus (McCarter, 1998) and V. vulnificus (Reddy
et al., 1992), colony opacity or rugosity is controlled by
the presence of their LitR homologues and has been
associated with the production of an extracellular poly-
saccharide. In V. vulnificus, opacity has also been cor-
related with an enhanced virulence resulting from the
presence of an antiphagocytic capsular polysaccharide
(Wright et al., 1990). Similarly, opaque strains of V. para-
haemolyticus are reported to be more resistant to killing
by oyster haemocytes (Genthner et al., 1999). When col-
onizing the squid, V. fischeri cells must face phagocytic
host haemocytes in the light organ crypts (Nyholm and
McFall-Ngai, 1998), a challenge that they avoid more
effectively than other Vibrio species. It will be interesting
to see whether the V. fischeri LitR mutant is more or less
resistant to this particular host defence; i.e. is the surface
chemistry associated with opacity a positive colonization
factor for pathogens, but a negative one for co-operative
infections?

Perhaps the most striking finding in this work is that,
when squid were exposed to an inoculum containing
equal cell numbers of both the mutant and the parent
strain, PMF8 became the predominant cell type in the
symbiont population. Although surprising, evidence for
enhanced infection of a host by bacteria that are mutated
for a particular wild-type activity is not without precedent
(Campbell et al., 1998; Lee et al., 2001; Shao and Hor,
2001). Nevertheless, our data are unexpected in view of
previous work showing that a knock-out mutation in the
V. fischeri luxR gene, which is positively regulated by LitR
(Table 3), results in both an inability to produce normal
levels of luminescence in the light organ and a signifi-
cantly decreased symbiont population size (Visick et al.,
2000). Juvenile squid infected by PMF8 were as luminous
at 12, 24 and 48 h after initial infection as were those
squids infected with the parent strain. Thus, even in the
absence of LitR, luxR transcription and its eventual effect
on induction of luminescence still occur. This conclusion
is supported by a previous report that the level of VAI-1
in the light organ is over 40-fold higher than that required
for maximal luminescence induction (Boettcher and Ruby,
1995), and data presented here showing that cells of
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PMF8 growing in culture medium containing VAI-1 rapidly
attained levels of luminescence that were only slightly
below those reached by the parent strain (Fig. 5). The
result is that there is no evidence that the role of LitR in
luminescence induction has a significant role in symbiotic
colonization.

What then might be the basis of the competitive advan-
tage expressed by the V. fischeri litR mutant? The altered
opacity of colonies produced by strain PMF8 suggested
that this strain might have a different cell surface chemi-
stry. Thus, we hypothesized that such a difference might
allow the mutant to adhere to the walls of the light organ
crypt more effectively than its wild-type parent. Because
ª 95% of the symbiotic cells in the light organ are expelled
each morning (Lee and Ruby, 1994a), an initially mixed
(wild type + litR mutant) population might eventually tend
towards dominance by the mutant. When this hypothesis
was tested by examining the ratio of mutant and wild-type
cells present in the light organ before and after an expul-
sion event, no evidence for a differential adherence was

detected (data not shown). Thus, the mechanism under-
lying the competitive advantage of the litR mutant, at least
during the first few days of colonization, must await future
efforts, such as the identification of the genetic loci 
that LitR regulates. Perhaps a more complete model for
LitR-mediated transcriptional activation in V. fischeri will
provide important clues to how the critical balance that is
required for an animal host and its bacterial symbionts
maintains a persistent benign infection.

Experimental procedures

Bacterial strains, plasmids and growth media

The Vibrio spp. strains and E. coli strains and plasmids used
in this study are listed in Table 3. All strains were stored at 
-70∞C until needed. V. fischeri strains were grown in a sea
water–tryptone–yeast extract medium (SWT) as described
previously (Boettcher and Ruby, 1990). Measurements of
culture luminescence were performed in this medium rather
than in a conditioned medium (Boettcher and Ruby, 1995) to
exclude any possible influence of the V. harveyi luxS auto-
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Table 3. Bacterial strains and plasmids used in this study.

Strain or plasmid Genotype or relevant characteristics Reference or source

E. coli
DH5a V. fischeri luxR promoter::lacZ Dunlap and Greenberg (1985)
BL21 T7 RNA polymerase, Ptac Sturdier et al. (1990)

V. fischeri
ES114 E. scolopes light organ symbiont Boettcher and Ruby (1990)
PMF8 ES114 derivative, litR::Kn This study
ES401 E. scolopes light organ symbiont This study
EM17 E. morsei light organ symbiont Nishiguchi et al. (1998)
EM24 E. morsei light organ symbiont Nishiguchi et al. (1998)
MJ1 Monocentris japonica symbiont Ruby and Nealson (1976)
ATCC 7744 V. fischeri type strain American Type Culture Collection
H905 Hawaii sea-water isolate Lee and Ruby (1994)
H906 Hawaii sea-water isolate Lee and Ruby (1994)

V. logei
MdR16 S. California sea water Fidopiastis et al. (1998)
MdRD S. California sea water Fidopiastis et al. (1998)

V. harveyi
B392 Sea-water isolate Reichelt and Baumann (1973)
MR1130 B392 derivative, luxR null mutant Showalter et al. (1990)

Plasmid
pKSII+ Bluescript, ApR resistance Stratagene
pVO8 pACYC with CmR, EmR Visick and Ruby (1997)
pJE413 pBR322 with luxC::mini-Mu, KnR Dunlap and Greenberg (1985)
pJE455 pBR322 with luxR::mini-Mu, KnR Dunlap and Greenberg (1985)
pUC4K KnR on 1.2 kb BamHI fragment Vieira and Messing (1982)
pEVS79 pBC derivative, mob+, CmR Stabb and Ruby (2002)
pMGM150 V. harveyi luxR on pKT230, SmR Miyamoto et al. (1990)
pMF2 litR on 1 kb fragment, pVO8, CmR This study
pMF6 litR on 3 kb SacI–ClaI fragment in pEVS79, CmR This study
pMF7 pMF6, litR::Kn, CmR This study
pRS205 V. harveyi luxCDABE Showalter et al. (1990)
pQF3.1 V. cholerae hap promoter::lacZ Jobling and Holmes (1997)
pC1.1 V. cholerae hapR gene Jobling and Holmes (1997)
pCR2.1 Cloning vector, ApR, CmR Invitrogen



inducer. Antibiotics were used at the following concentra-
tions: ampicillin (Ap) 100 mg ml-1; chloramphenicol (Cm) 
30 mg ml-1; kanamycin (Kn) 100 mg ml-1; and streptomycin
(Sm) 50 mg ml-1. Xgal indicator was used in Luria–Bertani
(LB) agar medium at 40 mg ml-1.

PCR, cloning and sequencing of V. fischeri litR

Cells of V. fischeri strain ES114 were grown with shaking in
SWT medium at 28∞C overnight to an optical density (OD) at
600 nm of between 1.0 and 1.2 (Boettcher and Ruby, 1990).
Cells were collected by centrifugation, and genomic DNA was
extracted using the GNome DNA kit (Bio101) in accordance
with manufacturer’s instructions. An aliquot containing
100–200 ng of V. fischeri genomic DNA was mixed with PCR
primers to amplify litR in a PCR as described previously
(Fidopiastis et al., 1998). The following degenerate PCR
primers were used to detect first the V. fischeri hapR homo-
logue: VchapR-deg5 (forward) 5¢ GGN ATN GGN CGN GGN
GGN CAY GCN GA 3¢ and VchapR-deg3 (reverse) 5¢ CCA
YTC RAA CCA NAC YTT NAR CCA 3¢. PCR primers Vf litRf
(forward) 5¢ GGC ATT GGT GGC GGT GGT CAT GCT GA
3¢ and Vf litRr (reverse) 5¢ CCA TTC AAA CCA TAC TTT GAT
CCA 3¢ were designed based on the sequence of the homo-
logous product and used to locate the litR gene within a 
12 kb fragment carried in a plasmid library of EcoRI-cut V. fis-
cheri genomic DNA. The litR locus was localized on the frag-
ment and sequenced. Using this sequence, PCR primers Vf
litRdf (forward): 5¢ GAT TAA GGA AGA GCT GTT AAC GG
3¢; and Vf litRdr (reverse): 5¢ GCT GCG GAA GTA TTT GAA
GG 3¢ were designed to amplify 1 kb of DNA containing the
entire litR gene with additional flanking genomic DNA. PCR
products were ligated into the vector pCR2.1 and cloned into
E. coli using the TA cloning kit (Invitrogen). The 1 kb PCR
product was cut from pCR2.1 with EcoRI and ligated into the
mobilizable vector pVO8 (Visick and Ruby, 1997) to create
pMF2 (litR+). Plasmid DNA was purified from several E. coli
clones using the Perfect Prep plasmid kit (5 prime-3 prime),
cut with the appropriate restriction enzymes and loaded into
separate wells of a 1% agarose gel. Inserts of the predicted
size were sequenced at the Biotechnology Molecular Biology
Instrumentation Facility, University of Hawai’i, Manoa.
Double-stranded sequence of the litR coding region and
single-stranded sequence of flanking DNA extending into 
the neighbouring upstream and downstream genes were
obtained by primer walking. Sequence data were analysed
using DNA STRIDER version 1.2, BLAST (Altschul et al., 1990)
and VECTOR NTI SUITE software (InforMax). The nucleotide
sequence of the 606 bp litR coding region has been submit-
ted to the GenBank databases under accession number
AF378100.

Mobility shift assays

Production and partial purification of V. fischeri LitR and 
V. harveyi LuxR proteins were performed using a previously
described protocol (Swartzman and Meighen, 1993). Plas-
mids (encoding Ap resistance) containing litR or luxR under
T7 promoter control were transformed into E. coli BL21
(DE3), a strain with T7 RNA polymerase encoded within the
chromosome under IPTG-inducible control. The recombinant

E. coli strains were inoculated to an OD of 0.05 in LB medium
containing Ap and grown at 37∞C. At an OD of 0.5, IPTG was
added to a final concentration of 1 mM to induce T7 poly-
merase and thereby overexpress the plasmid-encoded gene
products. After the cultures had reached an OD of between
1 and 2, the cells were harvested by centrifugation. One
hundred microlitres of lysis buffer (Swartzman and Meighen,
1993) was added to a pellet containing about 109 cells, and
the suspension was disrupted with a Branson ultrasonicator
at a setting of 30, using three 10 s treatments. Cellular debris
was removed by centrifugation, and the protein content in the
lysis supernatants was estimated spectrophotometrically.
Mobility shift assays were performed with the lysates accord-
ing to established procedures (Fried and Crothers, 1981;
Swartzman and Meighen, 1993), using restricted V. fischeri
DNA as the binding target.

Mutation of litR

The litR gene was centred within a 5 kb PstI–SacI fragment
of DNA from the EcoRI-cut V. fischeri genomic library, which
was subcloned into pBluescript KS (Stratagene), creating
plasmid pMF5. The litR gene and flanking DNA from pMF5
was moved into the mobilizable vector pEVS79 (Stabb and
Ruby, 2002) as follows. The two vectors were digested with
ClaI, then fused by ligating the two major fragments pro-
duced. This hybrid plasmid was restricted with SacI and self-
ligated to remove a 3 kb fragment of unnecessary DNA. The
resulting vector, pMF6, carried litR on a 3 kb SacI–ClaI frag-
ment. The litR gene in pMF6 was then disrupted by the inser-
tion of a 1.2 kb BamHI fragment encoding the kanamycin
marker from pUC4K (Vieira and Messing, 1982) into a unique
BglII site located 180 bases downstream of the predicted litR
start codon, creating pMF7

The mutant allele was then introduced into the V. fischeri
ES114 chromosome by triparental conjugation as described
previously (Stabb et al., 2001). The addition of chloram-
phenicol to growth media selected for single recombination
events between pMF7 and the V. fischeri genome. Double
recombinants that arose upon subsequent transfer, and that
no longer retained vector sequences, were identified by both
their chloramphenicol sensitivity and stable expression of
kanamycin resistance (Visick and Ruby, 1996). The presence
of the mutant allele in the chromosome of recombinant strain
PMF8 was confirmed by PCR using primer sets Vf litRf and
Vf litRr, or Vf litRdf and Vf litRdr, which both flank the site of
kanamycin gene insertion.

Functional complementation of the litR mutation

Plasmid pMF2 (litR+) or its parent vector pVO8 were electro-
porated into E. coli strains carrying reporter plasmids in which
promoters of either hap (pQF3.1) (Jobling and Holmes, 1997)
or V. fischeri luxR (Dunlap and Greenberg, 1985) drive lacZ
expression. Plasmid pMF2 was also electroporated into an
E. coli strain carrying pRS205 (V. harveyi luxR-; luxCDABE+;
Showalter et al., 1990) or conjugated (as described previ-
ously) into V. fischeri luxR and luxI mutants (Visick et al.,
2000), and the level of luminescence of the resultant strains
was determined. Electroporation was performed at 2.5 kV
and 400W using a GenePulser apparatus (Bio-Rad). Lumi-
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nescence reporters were also used to determine the role of
litR. Plasmid pPMF2 was electroporated into an E. coli strain
carrying pRS205 or conjugated (Stabb et al., 2001) into 
V. fischeri luxI and luxR mutants (Visick et al., 2000) before
luminescence measurement. E. coli reporter strains were
streaked on LB agar medium with the appropriate antibiotics
to maintain the plasmids and incubated overnight at 37∞C.
Confluently growing cells from the plates were scraped and
added to separate microfuge tubes. Cells were washed three
times in 10% glycerol and resuspended in 100 ml of 10% glyc-
erol to which vector (pVO8), a positive control (pC1.1, hapR+)
(Jobling and Holmes, 1997) or pMF2 was added just before
electroporation. Colonies expressing the appropriate anti-
biotic resistances were expected to contain both the reporter
and the experimental plasmids. The presence of pMF2 in the
appropriate E. coli strains was confirmed by PCR.

The results of litR complementation experiments with the
hap promoter reporter were indicated by the blue or white
colour of colonies arising on LB agar medium supplemented
with Xgal and the appropriate antibiotics. Confirmation of
complementation of the V. fischeri luxR promoter reporter
was performed using the Ima Gene Green C12 FDG lacZ
gene expression kit (Molecular Probes), according to the
manufacturer’s instructions. Fluorescence emission was
measured using an HTS 7000 fluorimeter (Perkin-Elmer). To
determine their effects on light production in either V. fischeri
or V. harveyi, plasmids pMF2 and pMGM150 (V. harveyi
luxR+; Miyamoto et al., 1996) were conjugated into the recip-
ient Vibrio species as described previously (Stabb et al.,
2001). The resulting strains were grown in SWT broth, and
their levels of luminescence were determined at an OD 
of 1.0.

Bacterial bioluminescence assays

The level of bacterial luminescence in culture, with or without
either exposure to 3 mM decyl aldehyde (decanal) or the 
addition of the V. fischeri autoinducer, 3-oxohexanoyl L-
homoserine lactone (VAI-1) to a concentration of 200 ng ml-1,
was determined as described previously (Fidopiastis et al.,
1998; 1999). Bacterial strains were inoculated to an OD of
0.01 in flasks containing 15 ml of SWT medium and grown
with shaking at either 22∞C or 28∞C. The OD and lumine-
scence of aliquots of the cultures were measured at regular
intervals throughout the exponential phase of growth.

Colony appearance, protease activity, siderophore
production and motility

The protease activities of V. fischeri strains ES114 and PMF8
were determined using cells grown either on solid medium or
in broth culture. Protease activity on plates was assayed by
streaking bacterial strains on a basal medium consisting of
50 mM Tris-HCl buffer (pH 7.4), 340 mM K2HPO4 and 15 g of
agar per litre of artificial sea water (Reichelt and Baumann,
1973) to which 10 g of porcine mucin (Sigma Chemical) were
added per litre as the sole carbon and nitrogen source. After
inoculation, plates were incubated for up to 96 h at 28∞C and
then flooded with a 15% HgCl2 solution (acidified with HCl)
and incubated overnight. This overlying solution was then
replaced with a 1% aqueous Coomassie blue stain and incu-

bated overnight again. When the stain solution was removed,
the absence of a blue colour staining in the medium around
the area of bacterial growth indicated the extent of mucin
digestion. Protease activity was also assayed on cells grown
to exponential phase with shaking in SWT medium. An aliquot
of cells was mixed in a reaction buffer (200 mM Tris-HCl, 
pH 7.8) containing 2 mM sodium azide and 5 mM L-leucine 
7-amido-4-methyl-coumarin protease substrate (Sigma
Chemical). At intervals of 8 min, fluorescence emission by 
the product of the proteolytic cleavage of this substrate was
determined in the HTS 7000 fluorimeter. Some of the reac-
tions also contained 500 mM Zincov (CalBiochem), a specific
zinc-metalloprotease inhibitor.

Siderophore production was determined by streaking
strains on an agar medium containing the iron-chelation 
indicator chrome azurol S (CAS), prepared as described 
previously (Lee and Ruby, 1994b). The degree of motility of
bacterial strains was determined by stabbing cells into SWT
medium solidified with 0.4% agar and monitoring over time
the diameter of the halo of migrating cells moving outwards
from the point of inoculation.

Colonization assays

The ability of the V. fischeri litR mutant strain to colonize juve-
nile E. scolopes squid was determined as described previ-
ously (Ruby and Asato, 1993). Briefly, cells of PMF8 and
ES114 were inoculated into natural sea water to concentra-
tions of between 400 and 2200 cells ml-1, either as the indi-
vidual strains or as a 1:1 mixture of the two. Newly hatched,
uninfected (aposymbiotic) juvenile squid were then placed in
this sea water and maintained at 22∞C for up to 48 h. The 
colonization process was monitored at 12, 24 and 48 h after
initial exposure to the bacteria by measuring the amount of
bacterial bioluminescence emitted from the squid. At either
24 or 48 h after initial exposure to the bacteria, squid light
organs were homogenized and plated on SWT agar. Total
colony-forming-units (cfu) were calculated and, if the light
organs had been colonized by a mixture of the two strains,
about 100 colonies were patched onto both LBS agar and
LBS agar containing Kn to determine the ratio of litR mutant
to wild-type cells in each light organ. This ratio was then
divided by the ratio (usually between 1.0 and 1.2) of mutant
to wild type in the inoculum used to infect squid, and the
resulting value was termed the mutant’s relative competitive
index (RCI).
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