
Roles of Bacterial Regulators in the Symbiosis 
between Vibrio fischeri and Euprymna scolopes 

1 
Introduction 

In a symbiosis, two or more evolutionarily distinct organisms communicate 
with one another in order to co-exist and co-adapt in their shared environment. 
The mutualistic symbiosis between the bioluminescent marine bacterium 
Vibrio fischeri and the Hawaiian squid Euprymna scolopes provides a model 
system that allows scientists to examine the mechanisms by which this 
communication occurs (McFall-Ngai and Ruby 1991). The squid, although 
V. fischeri-free (aposymbiotic) at hatching, rapidly acquires this bacterium and 
promotes its growth in a special symbiotic organ called the light organ (LO). 
In exchange for nutrients and a niche safe from competing bacteria, V. fischeri 
provides the bioluminescence used by E. scolopes to camouflage itself from 
predators. 

In this chapter, we will give an overview of the early events in establishing 
the symbiosis and describe associated developmental changes triggered in 
each organism by the interaction. We will then discuss bacterial regulators 
and, where known, the traits they control that are necessary for a productive 
interaction between V. fischeri and E. scolopes. Finally, we will conclude by 
highlighting important directions for future investigation. 

2 
Early Events in the Euprymna scolopes – Vibrio fischeri 
Symbiosis 

2.1 

seawater inhabited by the squid (Lee and Ruby 1992), yet this organism alone 
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is found in the light organ association (Boettcher and Ruby 1990). 
Furthermore, inoculation in the laboratory with bacteria closely related to 
V. fischeri, including V. harveyi and V. parahaemolyticus, fails to result in 
colonization (McFall-Ngai and Ruby 1991; Nyholm et al. 2000). In addition to 
this species-specific selection, strain-specific enrichment also occurs. Both 
visibly luminescent and non-visibly luminescent strains of V. fischeri co-exist 
in the seawater, but only the latter strains colonize the squid LO in nature (Lee 
and Ruby 1994b). This strict limitation on the species and strains of bacteria 
capable of colonizing the LO suggests that a specific exchange of signals must 

Within hours of hatching, E. scolopes recruits V. fischeri from the 
surrounding seawater. The presence of bacteria or the bacterial cell wall 
component peptidoglycan in the seawater causes the squid to secrete mucus 
(Nyholm et al. 2002), allowing V. fischeri cells to aggregate near pores leading 
into the LO (Fig. 1). Other bacteria such as V. parahaemolyticus also exhibit 
the ability to aggregate in squid mucus, suggesting that E. scolopes does not 
distinguish between V. fischeri and other Gram negative bacteria at this stage 
(Nyholm et al. 2000). However, when both V. parahaemolyticus and 
V. fischeri are present, the latter organism becomes the dominant species in 
the aggregate (Nyholm and McFall-Ngai 2003), indicating that V. fischeri may 
participate in establishing specificity at this stage. 
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occur between the squid and the bacteria early during colonization. 

squid LO during colonization. The position of the LO in a juvenile squid is shown on the 
Fig. 1. Cartoon depicting the structure of and developmental changes in the juvenile 

left, while an enlarged cross section is shown on the right. The juvenile LO contains 

duct. Arrows indicate developmental events that occur within the first 4 days after 
three pores on each side (six total), only one of which is depicted at the opening of the 

exposure to V. fischeri. Dashed lines indicate an enlargement of the boxed area. V. 
fischeri cells are shown as black ovals aggregated in the mucus (depicted as wavy lines) 
outside the pore and in the crypt spaces (without flagella). This depiction of the light 
organ is based on Visick and McFall-Ngai (2000) and references described therein. 
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2.2 
Vibrio fischeri cells navigate physical and chemical barriers to 
colonize Euprymna scolopes 

reaching ducts that ultimately lead into crypts, the sites of colonization 
(Fig. 1). In the ducts, the bacteria must move through mucus against an 
outward current generated by ciliated cells lining the passageway (McFall-
Ngai and Ruby 1998). As a further barrier to colonization, the ducts contain 
high levels of nitric oxide, an anti-microbial agent that may function as a layer 
of defense against invasion by non-specific bacteria (Davidson et al. 2004). In 
the crypts, V. fischeri cells may encounter macrophage-like cells, a potential 
immune surveillance system (Nyholm and McFall-Ngai 1998). In addition, the 
bacteria may be exposed to toxic oxygen radicals such as hypohalous acid, 
produced by a halide peroxidase enzyme secreted by epithelial cells within the 
crypts (Weis et al. 1996; Small and McFall-Ngai 1999). Despite this plethora 
of potential host defenses, V. fischeri cells can enter the LO and grow to high 
cell density, approximately 1011 cells/cm3 (Visick and McFall-Ngai 2000). 
Thus, V. fischeri must possess mechanisms by which it can evade host 
defenses and thrive in the LO environment. 

Growth to high cell density does not represent the endpoint of the 
symbiosis. Rather, the symbiosis is dynamic. Each morning the squid expels 
between 90 and 95% of the bacterial population from its LO (Lee and Ruby 
1994a). During the day, the V. fischeri cells retained in the squid divide to 
repopulate the LO. Therefore, persistent colonization actually consists of 
cycles of expulsion and re-growth, requiring the symbiotic bacteria to adapt to 
changing environments within the LO. 

2.3 
Both Organisms Undergo Developmental Changes in 
Response to the Symbiosis 

The interaction between E. scolopes and V. fischeri induces a number of 
developmental and morphological changes in each organism (Fig. 1). Ciliated 
epithelial cells, present on a field that projects outward from the LO, likely 
function to facilitate recruitment of V. fischeri by drawing the bacteria-laden 
seawater into the mucus matrix near the LO pores. Once the symbiont has 
successfully migrated into the LO, apoptosis and subsequently regression of 
these ciliated fields results in their loss over the course of four days 
(Montgomery and McFall-Ngai 1994; Foster and McFall-Ngai 1998). The 
consequence, presumably, is a reduction in any further recruitment of 
additional symbiotic bacteria. 

279 

From the aggregates, the V. fischeri cells migrate through LO pores, 



     Kati Geszvain, Karen Visick 

A bacterial signal that triggers some of the developmental changes in the 

Purified LPS is sufficient to induce apoptosis in the fields (Foster et al. 2000). 
Most likely, the highly conserved lipid A portion of LPS is responsible, as 
LPS purified from many species of Gram negative bacteria can induce 
apoptosis. Possibly, an LPS detection pathway similar to the Toll-like receptor 
pathway found in many organisms (Gerard 1998) recognizes bacterial LPS 
and triggers apoptosis. 

The LPS signal, however, is not sufficient to trigger regression of the 
epithelial fields; this suggests that more than one signal is required for this 
developmental change (Foster et al. 2000). V. fischeri strains that do not enter 
the LO fail to induce regression, suggesting signaling occurs between the 
bacteria and squid cells in the LO (Doino and McFall-Ngai 1995). Although 
regression requires a bacterial signal, the program continues regardless of the 
presence of bacteria: removing V. fischeri with antibiotic treatment after 12 h 
does not stop or reverse regression (Doino and McFall-Ngai 1995). 

Another developmental event in the squid may also function to reduce LO 
accessibility. Within 12 h after symbiotic colonization, a two- to three-fold 
increase in actin levels occurs within the apical surface of epithelial cells 
lining the LO ducts (Kimbell and McFall-Ngai 2004). This increase in actin is 
correlated with a narrowing of the ducts, which decrease in size two-fold 
(Fig. 1). The narrowing of the ducts, along with the loss of the ciliated fields 
on the LO surface, likely limits entry into the LO. However, the LO remains at 
least somewhat open to the environment, as marked bacteria introduced into 
the seawater can subsequently be isolated from the adult LO (Lee and Ruby 
1994b). Because V. fischeri remains the only bacterial resident, mechanisms 
must remain in place to prevent other species from infecting the LO. 

Changes also occur in crypt epithelial cells immediately adjacent to the 
colonizing V. fischeri bacteria. Within 72 h of symbiotic colonization, these 
cells increase in volume as they develop from columnar to cuboidal cells 
(Fig. 1) (Montgomery and McFall-Ngai 1994). Concurrently, the microvilli on 
their surfaces increase in density and complexity (Lamarcq and McFall-Ngai 
1998). These alterations likely increase the surface area available for 
interactions with the symbiotic bacteria. These structural changes require the 
persistent presence of bacteria (Doino 1998; Lamarcq and McFall-Ngai 1998), 
suggesting that a continual signal exchange occurs between the squid and 
bacteria throughout the symbiosis. 

V. fischeri cells also undergo developmental changes upon colonization of 
the LO. Planktonic V. fischeri are flagellated and motile, traits that are 
essential for the bacteria to enter the LO (Graf et al. 1994; Millikan and Ruby 
2003). Within 24 h of colonization, however, most of the bacteria lose their 
flagella and become non-motile. The cells re-grow flagella and regain motility 
shortly after expulsion from the LO (Ruby and Asato 1993). The bacteria also 
decrease in size in the LO and, after attaining high cell density, induce light 
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epithelial fields is the bacterial cell wall component lipopolysaccharide (LPS). 
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production (Ruby and Asato 1993) to a level 100-fold higher than in culture 
(Boettcher and Ruby 1990; Stabb et al. 2004). This luminescence is essential 
for persistent infection (Visick et al. 2000). Thus, in addition to signaling 
E. scolopes to induce developmental changes during the onset of symbiosis, 
V. fischeri also recognizes signals within the LO environment and adapts 
accordingly. 

3 
Regulatory Systems Employed by Vibrio fischeri to 
Promote the Symbiosis 

3.1 
Two-Component Signal Transduction Systems 

Many bacteria, including V. fischeri, recognize and respond to their 
environments using two-component regulatory systems (Fig. 2A, reviewed in 
Stock et al. 2000). These systems are composed of a sensor histidine kinase 

 
Fig. 2. Two-component regulatory systems. A. The phospho-relay in orthodox (top) 
and hybrid (bottom) two-component systems. Upon detection of signal, phosphate 
generated from a bound ATP is passed from conserved His to Asp residues until 
finally being transferred to an Asp in the response regulator, resulting in a response, 
either altered transcription or protein function. B. RscS is a hybrid sensor kinase. The 
sensor domain of RscS is composed of two transmembrane helices (TM), a large 
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Given the changes in environmental conditions that V. fischeri cells 
experience as they travel from seawater into the LO, it is not surprising that 
colonization by V. fischeri requires two-component regulators. At least two 
such regulators are required for efficient initiation of symbiotic colonization: 
the sensor kinase RscS (Visick and Skoufos 2001) and the response regulator, 
GacA (Whistler and Ruby 2003). A transcriptional regulator, FlrA, which 
exhibits limited similarity to response regulators and is required for initiation 
(Millikan and Ruby 2003) will also be discussed here. 

symbiotic colonization: most animals remain uncolonized following exposure 
to rscS mutants, although other animals become colonized after a delay of 
several hours (Visick and Skoufos 2001). These results suggest that mutants 
are blocked at an early stage of colonization, but that they can occasionally 
by-pass this block and ultimately achieve what appears to be normal 
colonization. In culture, rscS mutants do not exhibit defects in growth, 
motility, or the timing and level of bioluminescence induction, traits known to 
be important for colonization (Visick and Skoufos 2001). Thus, to date no 
clues to rscS function have been garnered by phenotypes observed in culture. 

The sequence of rscS suggests that it encodes a hybrid sensor kinase similar 
to ArcB and BvgS (Fig. 2B) (Visick and Skoufos 2001). These proteins 
contain, in addition to the conserved His residue that serves as the site of 
autophosphorylation, two additional domains with conserved residues (Asp 
and His) predicted to be sequentially phosphorylated and that may serve as 
sites of additional regulation (Fig. 2B). Upon receipt of a colonization signal, 
RscS is predicted to autophosphorylate and transfer the phosphate to an as-yet-
unidentified response regulator, termed RscR, which may regulate genes or 
activities essential for symbiosis. 

What serves as the colonization signal, and how is it detected by RscS? 
Clearly, many possibilities exist, and include in addition to bacterially produced 
molecules and seawater signals, components of the LO mucus, cell surface 
signals and nutrients. Determining the portion of RscS responsible for detecting 
the colonization signal will advance our understanding of symbiotic signal 
exchange. In many cases, the amino terminal periplasmic portion of sensor 
kinase proteins receives the environmental signal (Stock et al. 2000). For 
example, Salmonella PhoQ detects Mg2+ in the environment through its 
periplasmic domain; binding of Mg2+ to this domain results in a conformational 

protein that recognizes and transmits an environmental signal (through 

out a response. Most frequently, the response consists of a change in gene 
expression; alternatively, changes in protein activity can result. 

rscS. Mutations in rscS severely reduce the ability of V. fischeri to initiate 
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autophosphorylation on a His residue) to a second protein, the response 
regulator, which (when phosphorylated on a conserved Asp residue) carries 
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change and inactivation of the response regulator PhoP (Vescovi et al. 1997). 
RscS is predicted to possess a periplasmic domain of ~200 residues (Visick and 
Skoufos 2001); the large size of this region suggests it may play a role in RscS 
function, possibly signal detection. 

In addition to a potential periplasmic signaling domain, RscS contains a 
second input domain, known as PAS. In other proteins, PAS detects signals 
such as small ligands, or changes in light levels, oxygen concentration or 
redox potential (Taylor and Zhulin 1999). Whether the PAS domain 
contributes to signal detection by RscS during colonization remains unknown. 
However, the transition from seawater to the nutrient-rich LO could plausibly 
affect the energy status of the V. fischeri cells thereby altering their redox 
potential or oxygen concentration, which could be sensed by the PAS domain. 
Thus, investigations of the PAS and periplasmic domains of RscS will be 
fruitful for exploring bacteria-host interactions. Perhaps each domain detects a 
distinct condition, allowing RscS to integrate multiple signals from the squid 
environment to regulate the initiation of colonization. 

What is the identity of the cognate response regulator, RscR, and what 
genes or proteins are controlled by the RscS/R regulatory system? In many 
cases, the genes for sensor kinases and their cognate response regulators are 
linked on the chromosome, and in some cases, genes controlled by the 
regulators are also nearby. This is not the case for rscS and the gene encoding 
its response regulator. The advent of the V. fischeri genome sequencing 
project (http://ergo. integratedgenomics.com/Genomes/VFI), has made it 
possible to use bioinformatics to look for RscR. Using the sequences of known 

GacS/A regulates expression of virulence and host association traits, such as 
production of exoenzymes in Pseudomonas spp. (Heeb and Haas 2001) and 
motility in Salmonella (Goodier and Ahmer 2001). V. fischeri GacA also plays 
a role in host association. Mutants defective for gacA exhibit severe defects in 
initiating colonization: only about 10% of animals become colonized and 
those animals that become colonized exhibit a nearly 100-fold reduction in the 
level of colonization (i.e., the number of bacteria residing in the LO) (Whistler 
and Ruby 2003). The role of GacA is likely to be quite complex. In culture, it 
is associated with a number of phenotypes known to be important for 

gacA. In a number of pathogenic bacteria, the two-component system 
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regulators, we have searched and identified about 40 response regulators 
(Hussa and Visick, unpubl. data). At least 14 appear unlinked to sensor kinase 
genes, and thus represent the best candidates for RscR. Current work is aimed 
at mutagenizing these candidates and asking whether any mutants exhibit 
rscS-like colonization defects. If rscR encodes a DNA binding protein, then 
newly available DNA microarrays will be used to explore the regulon 
controlled by RscS/R. Identification of the targets of RscS/R regulation may 
also suggest a role for this regulon in symbiosis initiation. Once a target(s) of 
these regulators is identified, experiments aimed at identifying the 
colonization signal can be formulated. 



     Kati Geszvain, Karen Visick 

symbiosis, including motility, nutrient acquisition, siderophore activity and 
luminescence (Whistler and Ruby 2003). The global control of disparate traits, 
all of which contribute to host-association, highlights the importance of such 
regulators in the evolution of symbiotic associations. As with RscS/R, neither 
the signal nor the gene/protein targets for GacA/S are known. Identification of 
targets of GacA regulation, possibly through DNA microarray experiments, 
will help elucidate the role of this regulator in symbiosis and potentially reveal 
previously unknown traits important for host-microbe interaction. 

response regulators, functions as a master regulator of flagellar biosynthesis 
(Millikan and Ruby 2003). Given the absolute requirement for motility in 
symbiotic initiation, the requirement for FlrA seems straightforward as 
mutations lead to a lack of flagella. However, complemented flrA mutants 
showed restored motility but not normal colonization: initiation was delayed 
and the level of colonization at 48 h post-inoculation was reduced by 10-fold. 

One explanation for the above result is that the timing and level of flagellar 
biosynthesis are critical for optimal initiation and colonization and these 
characteristics were not properly restored in the complemented strains. In 
support of this hypothesis, hyper-motile (hyper-flagellated) V. fischeri mutants 
also exhibit severe delays in initiating colonization and defects in the level of 
colonization 24 h post-inoculation (Millikan and Ruby 2002). Alternatively, 
an equally plausible explanation is that FlrA controls genes other than those 
involved in flagellar biosynthesis (Millikan and Ruby 2003) that are also 
required for colonization. 

Several non-flagellar genes appear to be regulated by FlrA (Millikan and 
Ruby 2003). One gene that appears to be repressed by FlrA, hvnC, encodes a 
protein related to HvnA and HvnB, two secreted NAD+ glycohydrolases 
found in V. fischeri. However, neither hvnA nor hvnB appears necessary for 
colonization (Stabb et al. 2001); therefore, the relevance of FlrA-mediated 
regulation of hvnC is unclear. A second putative FlrA-repressed gene is 
homologous to V. cholerae kefB. In E.coli, KefB is a potassium efflux protein 
that is important for protecting cells from toxic metabolites during growth on a 
poor carbon source (Ferguson et al. 2000). Possibly, the V. fischeri KefB 
homolog provides protection from a LO-specific toxin. 

Are FlrA-repressed genes relevant to symbiotic colonization? FlrA-
controlled flagella, which are required for initiation, become dispensable to 
colonized bacteria. Thus, a switch in flagella gene transcription may be 
coordinated with induction or repression of non-flagellar genes through FlrA. 
The regulation of FlrA itself may be at the level of transcription, analogous to 

flrA. FlrA, a transcription regulator with limited sequence similarity to 

cAMP-CRP mediated control of the master flagellar regulators flhDC
 in 

FlrA to response regulators suggests its activity could be regulated via
E. coli (Soutourina et al. 1999). In addition, the limited similarity of

phosphorylation by a sensor kinase. Future work will likely focus on 
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determining whether FlrA itself is transcriptionally controlled, whether over-
expression of FlrA during colonization affects the level or timing of 
transcription of putative FlrA-controlled genes and whether such genes 
themselves promote (or interfere with) colonization. 

3.2 
Quorum-Sensing Regulatory Systems 

First described in V. fischeri, quorum sensing is used by many bacteria to 
detect the presence of other bacteria in their surroundings (reviewed in Taga 
and Bassler 2003). This method of monitoring the environment involves the 
production of a small molecule known as an autoinducer (AI) by an 
autoinducer synthase. Secreted into the environment, AIs can be recognized in 
recipient cells either by a specific two-component sensor kinase, or more 
frequently in Gram-negative bacteria, by a DNA-binding protein in the LuxR 
family. In either case, the AI signal results in transcriptional control of target 
genes. 

V. fischeri uses both the LuxR DNA binding protein and specific sensor 
kinases to detect at least three AI signals (Fig. 3). Both pathways contribute to 
the control of bioluminescence, a trait required for symbiosis. A mutant 

 

Fig. 3. Regulatory circuits required for symbiosis. Dotted lines represent hypothesized 
regulatory events. Activities required for symbiosis –“luminescence,” “motility,” and 
“other” – are represented as genes on the V. fischeri chromosome. Regulation of these 
activities may be through activation of transcription, as is the case for FlrA, through 
activation of transcription of a repressor, as is predicted to be the case for LuxO, or 
through modulating the activity of the protein product. The V. fischeri proteins AinS, 
AinR, and LitR are homologous to V. harveyi proteins LuxM, LuxN and LuxR, 
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A second AI synthase, AinS, produces a distinct AI that also is required for 
symbiosis. The pathway through which the AinS-synthesized AI is detected 

through two hybrid sensor kinases, LuxN and LuxQ, using a 
phosphotransferase protein, LuxU, to ultimately affect the activity of a 
response regulator, LuxO. In the absence of AIs, LuxO negatively regulates 
lux genes by indirectly controlling transcription of a transcriptional activator 
(LitR in V. fischeri [Fidopiastis et al. 2002]). In V. fischeri, the AinS-produced 
AI likely is recognized by AinR, a sensor kinase with significant homology to 
V. harveyi LuxN (Gilson et al. 1995; Lupp et al. 2003) (Fig. 3). 

A mutant defective for ainS exhibits a colonization level indistinguishable 
from that of luxA, luxI and luxR mutants (Lupp et al. 2003). However, whereas 
the luxA, luxI, and luxR mutants produce no symbiotic bioluminescence (at 
least 1000-fold decreased [Visick et al. 2000]), the ainS mutant produces 
approximately 10–20% of the wild-type bioluminescence. Thus, it seems 
probable that the role of ainS in colonization may be independent of its role in 
bioluminescence regulation. These phenotypes are difficult to separate, 
however: mutations in luxO, the response regulator through which the AI 
signals are transmitted, restore to wild-type levels both the slightly decreased 
symbiotic bioluminescence and the colonization defect of the ainS mutant 
(Lupp et al. 2003). Thus, an important direction will be to determine whether 
this pathway controls genes, other than lux, necessary for colonization. 

its interaction with the periplasmic protein LuxP (Taga and Bassler 2003). 
Because V. fischeri contains homologs for all of these genes (Lupp and Ruby 
2004), it seems likely that this AI system functions similarly in the symbiotic 
organism (Fig. 3). A strain of V. fischeri in which luxS is mutated colonizes 
the LO as well as the wild-type strain; however the luxS mutation appreciably 
decreases the colonization efficiency of an ainS mutant, but not its per cell 
luminescence (Lupp and Ruby 2004). These data provide further support for a 
role of the AinS system in symbiosis distinct from that of luminescence. 
Further investigation of the three quorum sensing pathways likely will provide 
insight both into genes necessary for symbiotic colonization and, because the 
signals are known, signal transduction during symbiotic colonization. 

defective for luxA, one of two genes that encode bacterial luciferase, exhibits a 
three- to four-fold reduction in colonization level within 48 h post-inoculation 
(Visick et al. 2000). Encoded upstream of luxA are LuxR and LuxI, an AI 
synthase that produces the AI detected by LuxR. Mutations in either luxR or 
luxI result in a colonization defect similar to that of the luxA mutant, 
suggesting that these regulators are required for symbiosis due to their role in 
transcriptional control of the lux operon. 

and transmitted is predicted based on studies in the related bacterium, 
V. harveyi (reviewed in Taga and Bassler 2003). In V. harveyi, AIs signal 

harveyi, LuxS produces an AI that is detected by sensor kinase LuxQ through 
V. fischeri encodes a third AI synthase, LuxS (Lupp and Ruby 2004). In V. 
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4 
Future Directions 

The initiation of the symbiosis between E. scolopes and V. fischeri involves 
several regulatory systems, many of which affect traits known to be involved 
in colonization (Fig. 3). Many important questions remain. First, what is the 
relation of these regulatory circuits to one another? Both FlrA and the 
luminescence regulator LuxO modulate transcription by σ54-containing RNA 
polymerase (Lilley and Bassler 2000; Millikan and Ruby 2003). Not 
surprisingly, a σ54 mutant is defective for colonization, motility and 
luminescence (Wolfe et al. 2004). Links between luminescence and motility 
also are found with the GacA mutant (Whistler and Ruby 2003) as well as 
with one class of hyper-motile mutants (Millikan and Ruby 2002), supporting 
coordinate regulation of motility and luminescence. Therefore, global 
regulation of the colonization response by V. fischeri may involve regulation 
of σ54 activity. Epistasis experiments could help to determine how these 
systems integrate to regulate colonization. 

Second, what other traits, aside from luminescence and motility, are 
required for initiation of symbiosis? RscS is required for initiation, yet has no 
effect on motility or luminescence. GacA and FlrA both appear to regulate 
other functions as well. The major outer membrane protein OmpU is required 
for initiation of colonization (Aeckersberg et al. 2001) as is a recently 
identified gene cluster (Yip et al. 2005). These genes are possible targets of 
the systems described here. Identification of additional targets will be greatly 
aided by the V. fischeri genome sequence and available microarrays. 

Finally, what signals are detected by the bacteria to regulate symbiosis? 
Aside from AIs produced by the quorum sensing systems, the signals received 
by the bacteria remain unknown. Predictions of the signals can be made based 
on our current knowledge of the environmental conditions in the LO. 
Furthermore, the recent sequencing of an E. scolopes expressed sequence tag 
library (http://trace.ensembl.org/) will facilitate identification of squid genes 
important for colonization and thus provide clues as to the conditions/signals 
the bacteria encounter in the LO. The answers to these questions will advance 
our understanding of the communication between and adaptation by V. fischeri 
and its host E. scolopes. 
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