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Abstract Loliginid and sepiolid squid light organs are
known to host a variety of bacterial species from the family
Vibrionaceae, yet little is known about the species diversity
and characteristics among different host squids. Here we
present a broad-ranging molecular and physiological analy-
sis of the bacteria colonizing light organs in loliginid and
sepiolid squids from various field locations of the Indo-West
Pacific (Australia and Thailand). Our PCR-RFLP analysis,
physiological characterization, carbon utilization profiling,
and electron microscopy data indicate that loliginid squid in
the Indo-West Pacific carry a consortium of bacterial species
from the families Vibrionaceae and Photobacteriaceae. This
research also confirms our previous report of the presence of
Vibrio harveyi as a member of the bacterial population
colonizing light organs in loliginid squid. pyrH sequence
data were used to confirm isolate identity, and indicates that
Vibrio and Photobacterium comprise most of the light organ
colonizers of squids from Australia, confirming previous
reports for Australian loliginid and sepiolid squids. In addi-
tion, combined phylogenetic analysis of PCR-RFLP and
16S rDNA data from Australian and Thai isolates associated
both Photobacterium and Vibrio clades with both loliginid
and sepiolid strains, providing support that geographical
origin does not correlate with their relatedness. These results
indicate that both loliginid and sepiolid squids demonstrate
symbiont specificity (Vibrionaceae), but their distribution is
more likely due to environmental factors that are present
during the infection process. This study adds significantly to
the growing evidence for complex and dynamic associations

in nature and highlights the importance of exploring symbi-
otic relationships in which non-virulent strains of pathogen-
ic Vibrio species could establish associations with marine
invertebrates.

Introduction

The family Vibrionaceae (gamma-proteobacteria) is a highly
diverse group containing both symbiotic and free-living
species [1]. Vibrionaceae is comprised of seven main
genera, including Vibrio, Listonella, Photobacterium, Enter-
ovibrio, Aliivibrio, Grimontia, and Salinivibrio [2], although
recent debates question the overall systematic classification
[3]. Vibrios are highly abundant in aquatic environments,
where they actively participate in the re-cycling of nutrients
and detritus [4]. In addition, a number of luminescent sym-
bionts play a key role in antipredatory behaviors docu-
mented in a number of marine organisms [5–7].

Members of the family Vibrionaceae have been frequent-
ly detected and isolated from freshwater, estuarine, and
marine habitats [8, 9]. Several species such as Vibrio fischeri
[10, 11], Vibrio logei [7], Vibrio harveyi [12, 13], and Photo-
bacterium leiognathi [14] play important ecological roles
because of their life history strategies, including both mutu-
alistic associations with marine organisms and free-living
planktonic lifestyles. Moreover, the genus Vibrio encom-
passes several pathogens of humans (e.g., Vibrio cholerae
[15, 16], Vibrio parahaemolyticus [17–22], and Vibrio vul-
nificus [23, 24]) as well as other eukaryotic organisms.
Some of these pathogens are known to attach to surfaces
of live marine animals without causing disease to their
invertebrate host. Examples of such associations include V.
cholerae and its copepod host, which constitutes an impor-
tant factor in the epidemiology of cholera disease [16], as
well as V. harveyi, which causes disease in marine animals,
producing mass mortalities in shrimp farms around the

C. Gorman :A. A. Chavez : S. Willie :M. K. Nishiguchi (*)
Department of Biology, New Mexico State University,
Las Cruces, NM 88003-8001, USA
e-mail: nish@nmsu.edu

R. Guerrero-Ferreira
Department of Pediatrics, Division of Pediatric Infectious
Diseases, Emory University School of Medicine,
Atlanta, GA 30322, USA

Microb Ecol (2013) 65:214–226
DOI 10.1007/s00248-012-0099-6



world (luminous vibriosis [25]) and also infecting pearl
oysters, fish, seahorses, and lobsters [26]. However, V. har-
veyi is also found mutualistically with the hydrozoan Aglao-
phenia octodonta [13] and fish light organs [27]. Similarly
to V. cholerae, these non-pathogenic associations are likely
to play a role in the epidemiology of vibriosis by V. harveyi.

Understanding bacterial diversity in natural environments
is of pivotal importance because this information provides a
phylogenetic framework to clarify the degree of variation
among species in a particular environment. Similarly, char-
acterizing microbial populations is also essential to helping
define the structure and diversity of a particular community
of microorganisms [28, 29]. Because of the large fraction of
non-culturable microbes in nature, establishing these parame-
ters via conventional culture-dependent, physiology-based
methods has serious limitations [30]. However, complement-
ing culture-based with molecular methods is an excellent
approach to elucidate the nature of bacterial communities,
without acquiring the large costs affiliated with wide-scale,
genomic-based approaches.

In the specific case of squid symbionts, light organ
homogenate, spread-plate cultures yield a great number
of luminescent colonies very similar to each other in
shape, color, size, and texture [12], which makes them
difficult to identify without a combination of microbio-
logical and genetic approaches. Recent studies by our
group that explore the diversity of bacterial isolates
colonizing light organs of loliginid squids in Thailand
have provided evidence that colonization is achieved by
multiple species of Vibrio [12, 31], including V. harveyi,
constituting the first report of a marine pathogen in a
molluscan mutualism. However, further studies were not
implemented to determine the physiological character-
istics of these isolates. Here, we report the physiological
characterization of Thailand isolates and the results of
comparative studies of 16S ribosomal RNA genes using
polymerase chain reaction (PCR) in combination with
restriction fragment length polymorphism (RFLP). To
better characterize variation among loliginid symbionts,
we used PCR-RFLP of the 16S rRNA locus to type and
identify marine Vibrios associated with light organs of
squids in the family Loliginidae (Mollusca: Cephalo-
poda) from Australian and Thai locations. This method
has proven to be time and cost efficient, and is increasingly
used as a standard technique to address questions regarding
the ecology, distribution, and biodiversity of natural isolates of
bacteria [32–38]. Additionally, a battery of microbiological
assays were completed in parallel to type and identify isolates
through culture based tests including Gram stain, light pro-
duction (luminescence), growth on thiosulfate/citrate/bile salts
(TCBS) agar, and growth on seawater tryptone (SWT) agar at
various temperatures in addition to phenotypes of each isolate
through electron microscopy.

Materials and Methods

Bacterial Strains, Growth Conditions, and DNA Extraction

Bacterial strains used in this study are listed in Table 1. To
isolate bacteria from squid light organs, ten specimens from
each location were captured by trawl netting for dissection
and their light organs removed and homogenized in sterile
seawater [39]. Collection sites in the Indo-West Pacific (a
zoogeographical region including the Indian and Pacific
oceans) are indicated in Table 1. Serial tenfold dilutions
(1/10,000) of the homogenate were plated on seawater tryp-
tone agar (SWT; 70 % seawater v/v, 0.5 % tryptone w/v,
0.3 % yeast extract w/v, 0.3 % glycerol v/v and 15 %
technical grade agar) and grown at 28 °C for 16 h. Individ-
ual colonies of luminous bacteria were isolated and used to
inoculate 5 mL of SWT broth and incubated for 18 h at 250
revolutions per minute (rpm). An aliquot (900 μL) of the
resulting culture was combined with the same volume of
40 % glycerol to be stored at −80 °C for further studies.

Total 16S rRNA Gene Amplification and Sequencing
from Bacterial Isolates

Isolates were recovered from glycerol stocks by growing them
overnight on SWT agar at 28 ºC. An individual colony was
recovered from each plate and inoculated in 5 mL of SWT
broth and incubated overnight on a shaking incubator
(250 rpm) at 28 ºC. Genomic DNA was isolated from these
liquid cultures using the DNAeasy Isolation Kit (Qiagen®,
Valencia, CA). Concentration and purity of genomic DNAwas
estimated with a Thermo Scientific NanoDropTM 1000 Spectro-
photometer (Thermo Fisher Scientific Inc., Waltham, MA).
DNA integrity was validated by 1% agarose gel electrophoresis
in 1× TAE buffer (40 mM Tris–acetate, 1 mM EDTA, pH 8.0).

16S rRNA amplification and sequencing was completed
using universal primers 16SF (5′-GCAAGCCTGATG
CAGCCATG-3′) and 16SR (5′-ATCGTTTACGGCGTG
GACTA-3′) at a 0.2 mM concentration per reaction. PCR
and sequencing reactions were completed in a DNA peltier
thermal cycler (MJ Research, Inc., Watertown, MA). Am-
plification reactions were executed using 0.05 U/μL of
Amplitaq Gold (Applied Biosystems, Foster City, CA) and
consisted of an initial hot start at 94 °C for 2 min followed
by 29 cycles of: 94 °C for 15 s, 55 °C for 30 s, and 72 °C for
30 s. After cycling, the process was terminated at 72 °C for
7 min. Each PCR reaction mix also contained 2.5 mM of
MgCl2, 0.5 mM dNTPs (25 μM each, Promega, Madison,
WI) and 0.05 U/μL of Taq DNA Polymerase (Promega,
Madison, WI), and 10× reaction buffer (10 mM Tris–HCl,
pH 9.0, 50 mM KCl, and 0.1 % Triton X-100). PCR reac-
tions yielded a gene product of about 1,500 bp when ana-
lyzed through gel electrophoresis.
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16S rDNA amplicons were purified from primers and
unincorporated nucleotides using the GeneClean® II DNA
purification kit (Bio 101, Carlsbad, CA) and used for sub-
sequent applications. Sequencing reactions were executed
by the dideoxy chain termination method using the Big
Dye™ Terminator v3.1 cycle sequencing kit (Applied Bio-
systems, Foster City, CA). Sequences were obtained
through the ABI 3100 genetic analyzer (Applied Biosys-
tems, Foster City, CA) and edited using Sequencher v4.6
(Gene Codes Corporation, Ann Arbor, MI). DNA sequences
were then compared with the National Center for Biotech-
nology Information (NCBI) database using BLAST 2.2.11
(Basic Local Alignment Search Tool, NCBI, NLM, NIH,
Bethesda, MD) for initial identification of bacterial isolates.

PCR Amplification and Sequencing of Partial 16S rRNA
Gene and Uridilate Kinase Gene (Pyrh) for Species
Identification

Amplification of partial 16S rRNA gene was completed using
primers 16S2F (5′-GCAAGCCTGATGCAGCCATG-3′) and
16S3R (5′-ATCGTTTACGGCGTGGACTA-3′) in a DNA
thermal cycler (MJ Research, Inc., Watertown, MA). PCR
conditions were the following for both genes: hot start at

94 °C for 2 min, followed by 25 cycles of: 94 °C for 2 min,
45 °C for 1.5 min and 72 °C for 2 min. A final termination step
at 72 °C for 8 min completed the process. PCR component
concentrations were the same as previously stated.

16S rRNA and pyrH amplicons were purified and se-
quenced as mentioned above. DNA sequences were then
compared with the NCBI database using BLAST 2.2.11 for
initial confirmation of sequence identity. Upon confirma-
tion, partial 16S rRNA gene sequences were incorporated in
the combined phylogenetic analysis described below.

Restriction Fragment Length Polymorphism (RFLP)
Analysis

RFLP analysis was completed as described by Urakawa et al.
[33, 35] using three restriction endonucleases: RsaI (5′
GTAC3′),HhaI (5′GCGC3′) andDdeI (5′CTNAG3′; Promega
Corporation,Madison,WI).Fragmentswere separated through
gel electrophoresis at2V/cmina1.5%agarosegel in0.5×TAE
buffer (20mMTrisacetate,and0.5mMEDTA).TheBenchTop
1 Kb Ladder was used as a molecular DNA marker (Promega
Corporation, Madison, WI). Image analysis and estimation of
fragment size were completed with the Kodak Molecular
Imaging software v5.0 (Carestream Health Inc., Rochester,

Table 1 Environmental and
laboratory isolates used in this
study

QLD Queensland, NSW New
South Wales, VIC Victoria

Strain Name Squid host or source Location

Group A Uroteuthis chinensis Cairns, QLD, Australia

Group B Uroteuthis etheriogei Townsville, QLD,Australia

Group C Photololigo noctiluca Sydney, NSW,Australia

Vibrio fischeri CG101 Cleidopus gloriamaris Townsville, QLD,Australia

Vibrio fischeri ET101 Euprymna tasmanica Crib Point, VIC,Australia

Vibrio fischeri ETJB Euprymna tasmanica Jervis Bay, NSW, Australia

Vibrio fischeri ES915 Euprymna scolopes Paiko, O’ahu, Hawaii, USA

Vibrio fischeri MJ101 Monocentris japonica Tokyo, Japan

Vibrio fischeri SL518 Sepiola ligulata Banyuls-sur-mer, France

Vibrio fischeri SR5 Sepiola robusta Banyuls-sur-mer, France

Vibrio fischeri WH1 Free-living Woods Hole, MA

Vibrio fischeri VLS2 Euprymna scolopes Kaneohe Bay, O’ahu, Hawaii, USA

Vibrio fischeri ES191 Euprymna scolopes Paiko, O’ahu, Hawaii, USA

Photobacterium phosphoreum Laboratory strain ATCC 11004

Photobacterium leiognathi Laboratory strain ATCC 25521

Photobacterium leiognathi RM1 Rondeletiola minor Banyuls-sur-mer, France

Photobacterium leiognathi LN101 Uroteuthis noctiluca Sydney, NSW, Australia

Vibrio fischeri PP3 Free-living Kaneohe Bay, O’ahu, Hawaii, USA

Vibrio fischeri PP42 Free-living Kaneohe Bay, O’ahu, Hawaii, USA

Vibrio anguillarum Laboratory strain ATCC 19264

EHP group Euprymna hyllebergi Phuket, Thailand

UCP group Uroteuthis chinensis Phuket, Thailand

UCR group Uroteuthis chinensis Rayong, Thailand

UDP group Uroteuthis duvauceli Phuket, Thailand
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NY). Informative electrophoresis bands derived from restric-
tion endonucleases digestion were scored for presence or
absence and entered into a migration distance matrix to deter-
mine specific banding patterns for each enzyme. PCR-RFLP
restriction pattern, presence–absence matrix, and 16S rRNA
gene sequence data were analyzed using the direct optimiza-
tion method described by Wheeler [40, 41] and implemented
in the computer program POY [42, 43]. Previously sequenced
16S rRNA gene sequences were retrieved from GenBank.

Phenotypic Characterization of Bacterial Isolates

Bacterial squid isolates were phenotypically identified follow-
ing the schemes of Alsina and Blanch [44] and Farmer et al.
[2]. Physiological and morphological tests were completed
and are listed in Table 2.

Observation of Bacterial Cellular Morphology

Isolates from individual bacterial colonies were used to inocu-
late 5 mL of SWT media and grown overnight at 28 °C in a
shaking incubator (250 rpm). Bacterial samples were prepared
using a technique modified from Allen and Baumann [45] for
examination of cell appendages by transmission electron mi-
croscopy. Briefly, 5 μL of culture was added onto a 200-mesh
Formvar coated nickel grid (Electron Microscopy Sciences,
Hartfield, PA) and allowed to sit for 10 s. Excess culture media
was blotted dry with filter paper. This was followed by the
addition and removal of 5 μL of distilled water, which
provided the initial wash. Staining was completed with a 1 %
aqueous solution of uranyl acetate for 10 s. Excess stain was
removed and the grid was allowed to air dry. Conversely, cells
grown in solid media were harvested by addition of 5 μL of
sterile seawater directly on solid agar media, and immediately
homogenized by slow pipetting. Five microliters of the homog-
enate was collected and processed as mentioned previously.
Micrographs were obtained using a Hitachi H-7650 (Hitachi
High Technologies America, Pleasanton, CA) transmission
electron microscope (TEM) at an accelerating voltage of 80 kV.

Accession Numbers

The 16S rRNA and pyrH gene sequences determined in this
studyweredepositedinGenBankandarelistedinTables3and4.

Results and Discussion

Phenotypic Characterization of Thailand Squid Bacterial
Isolates

A number of isolates from Thailand loliginid squids had
been previously identified as members of the genus Vibrio

on the basis of their 16S rRNA gene sequence [12] (Table 3).
However, these isolates exhibited sequence similarities of
98 % or higher to the 16S rRNA gene sequence of Vibrio
alginolyticus [46], V. harveyi [46], and Vibrio charchariae
(synonym of V. harveyi) [46]. This high percent of sequence
similarity did not allow for the specific identification of
these isolates solely using their 16S rRNA gene sequence.

We carried out additional tests for physiological, mor-
phological, and biochemical characterization of Thai iso-
lates (Table 1) which provided a more precise species
identification. Results from these assays are shown in
Table 2. The isolates surveyed belonged to a single species
on the basis of their biochemical, physiological, and mor-
phological analysis and were definitively identified as V.
harveyi. Previous research by Dunlap et al. [27] provided
similar evidence of the presence of V. harveyi in the light
organ of the marine fish Nuchequula nuchalis (Perciformes:
Leiognathidae) identified by luxA sequences. However, our
research constitutes the first report confirming the presence
of V. harveyi as a member of the bacterial population colo-
nizing light organs in loliginid squid.

All Thailand isolates were found to be Gram-negative,
luminescent rods, sensitive to the vibriostatic agent 0/129 (at
both 10 and 150 μg). These isolates were unable to grow in
liquid media without sodium chloride, and exhibited no
growth at 4 °C in SWT. As shown in Table 2, the results
are consistent with the characteristics of a laboratory strain
incorporated in this analysis, as well as other V. harveyi
laboratory [2] and natural [13] isolates. Similar results were
also attained with the oxidase, catalase, Voges–Proskauer,
indole, and gelatinase tests. Uniformity between isolates
was also achieved in the output of carbon utilization pro-
files. When compared with other isolates of V. harveyi,
Thailand strains were equally capable of utilizing L-arabi-
nose, mannose, cellobiose, glucose, trehalose, melibiose,
lactose, mannitol, sorbitol, and inositol as unique carbon
sources (Table 2).

Interestingly, some differences were evident regarding
the ability of individual isolates to produce the enzymes
lysine and arginine decarboxylase when compared to a
laboratory strain of V. harveyi, which is pathogenic in ma-
rine environments. Similar results have been reported for
lysine decarboxylase in V. harveyi, where contradictory
results were obtained in tests from the Centers for Disease
Control and Prevention Vibrio reference lab using standard-
ized enteric media supplemented with marine cations [2].
This may be due to the particular environmental niche each
isolate has adapted to, despite being from the same species.

The presence of arginine decarboxylase (ADC) in strains
isolated from loliginid squid light organs (Table 2) may be
indirectly related with the formation of bacterial biofilms
within squid tissues of the light organ, an important factor
for successful colonization. ADC is responsible for catalytic
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Table 2 Results of physiological and morphological assays of Vibrio harveyi squid isolates

Characteristic
assay

Thailand
bacterial isolates

Vibrio
harveyia

Results from
Stabili et al. [13]

Results from Farmer III et al. [2]

Vibrio
harveyi

Vibrio
fischeri

Vibrio
alginolyticus

Vibrio
campbelli

Vibrio
damsela

Gram reaction – – – – – – – –

Cell
morphology

r r r r r r r r

Luminescence + + + d + – – –

0/129 sensitivity

10 μg + + + d + d nd +

150 μg + + + + + d nd +

Growth in 0 %
NaCl

– – – – – – – –

Growth in 3 %
NaCl

+ + + + + + + +

Growth in 8 %
NaCl

+ + + + – + + –

Growth at 4 °C – – – – – – – nd

Growth at 30 °
C

+ + + + + + + +

Growth at 35 °
C

+ + + + d + + +

Oxidation/
fermentation

F F F F nd nd nd nd

Decarboxylase (NaCl)b

Arginine + – – – – – – +

Lysine – – + + + + + +

Ornithine + + + + – – – –

Acid from
Inositol

– – nd nd nd nd nd nd

Acid from
Arabinose

– – nd nd nd nd nd nd

Acid from
Sucrose

– – nd nd nd nd nd nd

Oxidase + + + + + + + +

Catalase + + + + +c nd nd nd

Voges–
Proskauer

– – – – – + – +

Indole + + + + – + + –

Gelatinase + + + + – + + –

Lipase – – + + + + + –

Citrate – – – + d + d –

Carbon sources

L-Arabinose – – – d – – – –

Mannose + + + + + d d +

Cellobiose + + + + + – d –

Glucose + + + nd nd nd nd nd

Galactose d + – d + d – nd

Trehalose + + + + d + + –

Melibiose – – – – – – – –

Lactose – – – – – – – –

Mannitol + + + + + + d –

Sorbitol – – – – – – – –

Inositol – – – – – – – –

Sucrose – + – d – + – –
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reactions occurring in alternative pathways for the synthesis
of putrescine, a precursor of many polyamines [47]. In
bacteria, they play a significant role in the formation of
biofilms. Patel et al. [48] demonstrated that polyamines are
responsible for the formation of biofilms by Yersinia pestis.
Similarly, polyamines are also responsible for the modula-
tion of bacterial biofilms within Vibrionaceae species. For
example, Karatan et al. [49] reported that formation of
biofilms by V. cholerae is activated by an increase in the
environmental concentration of norspermidine, a poly-
amine. Most importantly, the gene for ADC was previously
found to be expressed solely by symbiotic V. fischeri
ETJB1A in the light organ of the sepiolid squid Euprymna
tasmanica [50, 51]. This indicates that ADC expression is
highly specific during growth and persistence of V. fischeri
in the light organ, suggesting that this gene has an important
role in establishing and maintaining the symbiosis. For
instance, some Vibrio species also use ADC to regulate
pH, which may be linked to the shift between aerobic and
fermentative states while colonizing the sepiolid light organ
[50]. The source of the V. fischeri strain in Farmer et al. [2]
is not indicated in their study. However, the negative ADC
result reported may indicate that it was a seawater isolate

and not a symbiotic one. Furthermore, Guerrero-Ferreira
and Nishiguchi [31] reported the expression of ADC gene
by symbiotic V. harveyi, hypothesizing that environmental
production of ADC to degrade ArgA (a molecule associated
to V. cholerae pathogenesis [52]) may play a pivotal role in
the transition of V. harveyi from a pathogenic to mutualistic
state [53].

Phenotypic variation is not an isolated occurrence in V.
harveyi strains. In a study by Vidgen et al. [26], differences
were evident in phenotypic profiles of five V. harveyi strains
(four seawater isolates and a pathogenic strain from a dis-
eased prawn Penaeus monodon). Those differences were
associated with the presence of a specific mobile genetic
element, named V. harveyi myovirus-like bacteriophage
(VHML), which caused the bacterium to elicit variable
responses to several phenotypic tests [26]. Another example
of this phenomenon is found in the bacterium Aeromonas
veronii, a digestive tract symbiont of the medicinal leech
Hirudo medicinalis [54, 55]. When tested for the presence
of the enzyme arginine dehydrolase, isolates of A. veronii
obtained from clinical sources (i.e., respiratory secretions,
infected wounds, and stools) were negative [56]. Converse-
ly, strains isolated in their symbiotic state (i.e., in the

Table 2 (continued)

Characteristic
assay

Thailand
bacterial isolates

Vibrio
harveyia

Results from
Stabili et al. [13]

Results from Farmer III et al. [2]

Vibrio
harveyi

Vibrio
fischeri

Vibrio
alginolyticus

Vibrio
campbelli

Vibrio
damsela

Identification Vibrio harveyi Vibrio harveyi Vibrio harveyi

d diverse, nd no data, + positive reaction, – negative reaction, F fermentative, r rod shape
aVibrio harveyi ATCC 14126
b (NaCl) indicates that NaCl was added to the standard media to enhance growth
c Visick and Ruby [63]

Table 3 16S rRNA sequence
information from Thailand Vib-
rio harveyi isolates from loligi-
nid squid light organs

UCP6 16S rRNA sequence
from Guerrero-Ferreira and
Nishiguchi [12]

Species name Squid host Isolate name Location Accession number

Vibrio harveyi Uroteuthis chinensis UCP6 Phuket, Thailand AY332404

Vibrio harveyi Uroteuthis chinensis UCP8 Phuket, Thailand FJ227109

Vibrio harveyi Uroteuthis chinensis UCP9 Phuket, Thailand FJ227110

Vibrio harveyi Uroteuthis chinensis UCP10 Phuket, Thailand FJ227111

Vibrio harveyi Euprymna hyllebergi EHP6 Phuket, Thailand FJ227112

Vibrio harveyi Euprymna hyllebergi EHP7 Phuket, Thailand FJ227113

Vibrio harveyi Euprymna hyllebergi EHP8 Phuket, Thailand FJ227114

Vibrio harveyi Euprymna hyllebergi EHP9 Phuket, Thailand FJ227115

Vibrio harveyi Euprymna hyllebergi EHP10 Phuket, Thailand FJ227116

Vibrio harveyi Euprymna hyllebergi EHP11 Phuket, Thailand FJ227117

Vibrio harveyi Euprymna hyllebergi EHP12 Phuket, Thailand FJ227118

Vibrio harveyi Euprymna hyllebergi EHP13 Phuket, Thailand FJ227119
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digestive tract of their leech host) were positive for arginine
dehydrolase. Therefore, existing data suggests that within-
species variation in arginine metabolism is common in
members of the family Vibrionaceae. More interestingly,
occurrence of this variation in other bacterial species may
be niche related.

Morphology and flagellation patterns of each Vibrio sym-
biont were completed by negative staining TEM (represen-
tative micrographs in Fig. 1a, b). After extensive screening,
it is evident that isolates appeared rod shaped and displayed
a single polar flagellum when grown in liquid media
(Fig. 1a). This type of flagellum is commonly observed in
species of the genus Vibrio grown under these conditions,
with the exception of V. fischeri, which exhibits lophotri-
chous flagella (two to eight polar flagella; [57]). Although
flagellation pattern was not considered diagnostic for spe-
cies identification, our microscopic survey confirms that the
isolates are not V. fischeri. When grown on solid medium,
peritrichous (lateral) flagella were observed in addition to
the polar flagellum (Fig. 1b). Production of both polar and
peritrichous flagella has previously been reported to occur in
several species of Vibrio (e.g., V. harveyi, V. parahaemoly-
ticus, and V. alginolyticus [57]).

Amplification and Sequencing of Uridilate Kinase Gene
(pyrH) for Characterization of Bacterial Consortia
in Loliginid Squids

With the purpose of confirming the multi-specific nature of
the population of bacteria colonizing loliginid light organs,
ten isolates of luminescent strains representing several geo-
graphical areas off the coast of Australia were selected for
sequencing the uridilate kinase gene (pyrH; Table 4). The
use of this genetic marker for species identification within
the Vibrionaceae family extends from bacterial pathogenesis
studies to ecological analysis of both marine and freshwater
environments [58–60]. Our results confirm that loliginid

light organs are colonized by a luminescent bacterial con-
sortium. This condition is at least common for the selected
squid hosts examined in this study, including representatives

Table 4 Species identification of Australian isolates based on protein BLAST of pyrH gene sequences. Species names correspond to the highest
score of significant alignment using BLAST

Isolate name Squid host Symbiont species identification Accession number

A1-1 Uroteuthis chinensis Vibrio harveyi HQ226045

A1-5 Uroteuthis chinensis Photobacterium angustum/P. leioghnati [64] HQ226046

A1-6 Uroteuthis chinensis P. angustum/P. leioghnati HQ226047

A2-1 Uroteuthis chinensis V. harveyi HQ226048

B1-1 Uroteuthis etheriogei V. cyclitrophicus HQ226049

C1-1 Photololigo noctiluca P. angustum/P. leioghnati HQ226050

C2-7 Photololigo noctiluca V. cyclitrophicus/V. fischeri HQ226051

C3-5 Photololigo noctiluca P. angustum/P. leioghnati HQ226052

C4-23 Photololigo noctiluca V. harveyi HQ226053

C5-10 Photololigo noctiluca V. cyclitrophicus HQ226054

Figure 1 Transmission electron micrographs of Vibrio harveyi squid
isolates grown in (a) seawater tryptone liquid media or (b) seawater
tryptone agar. Scale bar0500 (a) and 100 nm (b)
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of the genera Uroteuthis and Photololigo. Of the selected
isolates, three were identified as V. harveyi, further indicat-
ing that this species exists in a mutualistic association with
loliginid squids in Australia (Table 4).

Polymerase Chain Reaction/Restriction Fragment Length
Polymorphism (PCR/RFLP) Confirms Multi-Species
Symbiosis in Squids from Thailand and Australia

In a complementary approach to further explore the diver-
sity of bacterial species colonizing light organs in Thai and
Australian squids, we analyzed 16S rRNA-PCR/RFLPs of
92 strains including natural isolates and laboratory strains.
Amplification of the 16S rRNA gene resulted in a gene
product of ∼1,400 bp corresponding to the predicted size
for this gene amplified under the conditions presented. After
digestion with three restriction enzymes, a series of frag-
ment patterns were obtained and are schematically summa-
rized in Fig. 2. The number of restriction banding patterns
obtained for each enzyme treatment was: 25 for DdeI, 36 for
HhaI, and 38 for RsaI. Fingerprints constructed with these
restriction enzymes exhibited considerable variation when
compared among environmental and laboratory isolates.

These differences were confirmed by dendograms con-
structed using restriction patterns (band presence or ab-
sence) as input for the phylogenetic analysis (Fig. 3).

Analysis of strains isolated from groups A, B, and C
(from Australia) indicates that bacteria colonizing loliginid
light organs are represented by more than one species.
Interestingly, RFLP patterns consistently grouped strains
from Uroteuthis etheriogei (Group B) in clusters different
than those of V. fischeri and Photobacterium species. HhaI
and DdeI RFLP analyses resulted in grouping of Photo-
bacterium isolates into their own clade (Fig. 3a, b). How-
ever, RFLP data from only HhaI restriction (independent of
RsaI and DdeI) generated a phylogeny in which the genus
Photobacterium grouped independently from the other Vib-
rio isolates (Fig. 3b), specifically V. fischeri. These results
are in accordance with a study by Urakawa et al. [34], where
only HhaI RFLP analysis resulted in the separation of
Photobacterium from Vibrio genera. Other enzymes tested
in the aforementioned study did not produce RFLP data that
separated these two genera into different operational taxo-
nomic units (OTUs). In our study, the cladogram obtained
from RsaI restriction profiles neither engendered an appar-
ent Photobacterium clade, nor put all V. fischeri strains as

Figure 2 Diagrams representing restriction patterns of 16S rRNA gene digested with DdeI (a), HhaI (b) or RsaI (c). First column in each diagram
corresponds to the banding pattern for the 1 Kb ladder
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sister taxa (Fig. 3c). Not all mutualistic Vibrio isolates
appear in this group, with free-living V. fischeriWH1 group-
ing separately with Thailand strains.

The distribution of isolates within and among OTUs was
neither determined by geographical origin of each isolate
nor by its animal host. This is an indication that host bioge-
ography does not play a pivotal role on the phylogenetic
history of bacterial populations associated with these species
of squids. Australian isolates from groups A, B, and C (three

different collection sites in Australia; Table 1) appear scat-
tered throughout the dendograms, indicating no biogeo-
graphical partitioning. This lack of pattern is visible in all
RFLP derived dendograms, where isolates from Thailand,
Australia, Hawaii, and the Mediterranean Sea appear to
group together in single clades, despite their geographical
origin. This is in contrast to previous studies using more
sensitive methods (sequence data) where clear delineation
was apparent among V. fischeri strains that were allopatric

Figure 3 Dendograms built from restriction profiles using parsimony implemented in POY 4.0. Refer to Table 1 for isolates names

222 R. Guerrero-Ferreira et al.



and exhibited introgression between closely related pop-
ulations [61]. Interestingly, sepiolid squids are benthic
and do not move between areas as much as loliginid
squids, thereby producing more fragmented populations
of Vibrio bacteria.

Combined Phylogenetic Analysis Using PCR/RFLP HhaI
Profiles and 16S rRNA Sequence Data

Considering the recognized efficiency of using HhaI restric-
tion profiling to distinguish between species of the genera

Figure 4 Phylogenetic analysis combining PCR/RFLP data with 16S
rRNA gene sequences using parsimony. Jackknife values of more than
50 % are shown as numbers on nodes. Trees were searched by TBR
(tree bisection and reconnection) branch-swapping on the best of 100

replicates. One round of tree-fusing was also implemented [65]. At the
same time, the command TreeView 0.4.1 was used for visualization of
binary trees and PAUP 4.0.10 for consensus tree calculation
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Photobacterium and Vibrio [34, 62], and recognizing the
relevance of 16S rRNA gene sequences for the construction
of Vibrionaceae phylogenies and the study of the evolution
of symbiotic bacteria [1, 12], our study also incorporated a
combined phylogenetic approach using both sequence and
HhaI restriction profile data. Figure 4 depicts the phyloge-
netic tree resulting from this combined approach. A combi-
nation of both data types in a single analysis yielded a
distribution of taxa that restricts both the V. fischeri group
(97 % jackknife support) and the Photobacterium genus
(99 % jackknife support) into their individual clades. In
addition, a number of loliginid squid isolates that the micro-
biological assays identified as V. harveyi were placed within
a sole clade, adding strength to our initial conclusions.
These results also provide some additional support to pre-
vious cladistic analysis, where Vibrio and Photobacterium
were split into separate clades [3].

Conclusion

The use of RFLP of PCR amplified 16S rRNA genes proved
to be effective for preliminary screening, evaluation, and
characterization of Vibrionaceae populations of bacteria col-
onizing light organs in loliginid squids. 16S rRNA analysis
has been used for the rapid identification of unknown bac-
terial isolates in samples of fisheries or aquaculture stocks,
as well as natural harvests of marine organisms. A system-
atic development of this technique for Vibrio specific groups
would contribute to the quick diagnostics of field-collected
samples, with the goal of determining whether microbial
pathogens (in particular Vibrio species) exist as contami-
nants. In addition, this research further supports that PCR/
RFLP analysis is a rapid and economical tool to distinguish
the genus Vibrio from other members of the family Vibrio-
naceae, particularly when the number of samples makes
phenotypic characterization an expensive and tedious task.
Finally, the combination of molecular and biochemical
assays has provided additional information regarding spe-
cies dynamics in Vibrio-loliginid squid symbiosis.

Our study also presents additional evidence of a newly
recognized association between V. harveyi and squids of the
family Loliginidae. Our findings contribute to the under-
standing of bacterial populations in the ocean as it demon-
strates that pathogenic bacteria such as V. harveyi can also
exist as partners in mutualistic associations with loliginid
squids. Considering this, there may be some implications
regarding the epidemiology of vibriosis in Thailand and
Australian coastal areas. Species of sepiolid and loliginid
squids are distributed broadly in the Andaman Sea, the Gulf
of Thailand, and off the coasts of Australia, and these hosts
may represent an ecological niche for pathogens of other
marine organisms (including those exploited in aquaculture).

V. harveyimay utilize these squids as a subtle reservoir for the
maintenance of its populations during periods of quiescence.
Understanding these survival strategies would better our
approaches for assessment of water quality and also clarify
the mechanisms of transmission of Vibrio-borne diseases and
the transition between mutualistic and pathogenic life history
strategies. Future studies to examine the distribution of V.
harveyi throughout the Indo-west Pacific, and the possible
existence of specific strains from other locations, may help
provide evidence for plausible precursors of vibriosis in the
marine environment.
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