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Abstract

Relatively little is known about large-scale spatial and
temporal fluctuations in bacterioplankton, especially
within the bacterial families. In general, however, a
number of abiotic factors (namely, nutrients and temper-
ature) appear to influence distribution. Community
dynamics within the Vibrionaceae are of particular interest
to biologists because this family contains a number of
important pathogenic, commensal, and mutualist species.
Of special interest to this study is the mutualism between
sepiolid squids and Vibrio fischeri and Vibrio logei, where
host squids seed surrounding waters daily with their
bacterial partners. This study seeks to examine the spatial
and temporal distribution of the Vibrionaceae with
respect to V. fischeri and V. logei in Hawaii, southeastern
Australia, and southern France sampling sites. In partic-
ular, we examine how the presence of sepiolid squid hosts
influences community population structure within the
Vibrionaceae. We found that abiotic (temperature) and
biotic (host distribution) factors both influence popula-
tion dynamics. In Hawaii, three sites within squid host
habitat contained communities of Vibrionaceae with
higher proportions of V. fischeri. In Australia, V. fischeri
numbers at host collection sites were greater than other
populations; however, there were no spatial or temporal
patterns seen at other sample sites. In France, host
presence did not appear to influence Vibrio communities,
although sampled populations were significantly greater in
the winter than summer sampling periods. Results of this
study demonstrate the importance of understanding how
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both abiotic and biotic factors interact to influence
bacterial community structure within the Vibrionaceae.

Introduction

Recent work in marine microbial ecology has uncovered
the importance of bacterioplankton in many ecological
processes [4, 15, 24, 27, 31]. Given the ecological
significance of these communities, there is a need to
understand the dynamic forces shaping their structure.
Changes in abiotic factors, such as temperature, salinity,
and nutrients, have been shown to be important causes
of community changes. More recently biotic factors,
including bacterivory, bacteriophage parasitism, and
mutualistic relationships, have been shown to affect
bacterioplankton [22, 34]. One mutualism that appears
to influence bacterial community structure is the
relationship between sepiolid squids (Cephalopoda:
Sepiolidae) and their Vibrio symbionts.

In the association between sepiolid squids and Vibrio
fischeri and/or Vibrio logei, the squid host benefits from
Vibrio-produced light that is used in counterillumination
(an antipredation mechanism), whereas vibrios benefit
from a nutrient-rich habitat in which near-maximum
growth rates can be achieved [5, 17]. In this environ-
mentally transmitted symbiosis, juvenile squids acquire
their bacterial symbionts from the surrounding seawater
upon hatching. After colonization, the host exhibits a
daily venting behavior in which 90-95% of the symbionts
are released into the surrounding seawater [19, 32].
Because bacterial populations in mature squids can reach
levels of approximately 10°-10"" cells within the light
organ [33], the daily flux of Vibrio into the environment
can potentially influence local bacterioplankton commu-
nity structure.
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On the island of O’ahu, Hawaii, studies using lux gene
probes [20, 21] have demonstrated that the presence of the
squid host Euprymna scolopes does appear to influence
community structure within the Vibrionaceae. However,
Hawaiian waters represent a relatively simple system to
study bacterioplankton community dynamics because of
the relatively constant water temperature and lack of a
predominant thermocline within host habitats. It appears
that in different locations where this symbiosis occurs,
other factors may influence community dynamics within
the Vibrionaceae. For example, at sites in Banyuls-sur-mer,
France, studies using plate counts of V. fischeri, a warm-
adapted symbiont, and V. logei, a cold-adapted symbiont,
have demonstrated that the presence of a thermocline
presents a barrier to mixing between these two species [28].
The profound impact on the spatial distribution of Vibrio
species at this location suggests that there may be additional
factors capable of influencing local bacterioplankton com-
munity structure. Further adding to this complexity are a
number of different strains of V. fischeri in nature, many of
which cannot colonize at all (nonsymbiotic) or can only
partially colonize the light organ of sepiolid hosts [21].

The goal of this study was to examine the distribution of
V. fischeri and V. logei in reference to host location using
fluorescence in situ hybridization (FISH) with a nested set
of probes (i.e., y-Proteobacteria > Vibrionaceae > V. fischeri
and V. logei) in an attempt to understand the complex
spatiotemporal patterns of members of the Vibrionaceae.
Using a modification of traditional FISH, which incorpo-
rates direct counts (DC) on filters [23], we have accumu-
lated an extensive dataset examining the Vibrionaceae, V.
fischeri and V. logei, at field sites in southern France and
along the east coast of Australia to obtain a more definitive
picture of how various factors influence population
structure within the Vibrionaceae.

Methods

Probe Construction and Optimization. ~ Probes used in
this study are listed in Table 1. To design the Vib749

Table 1. Probes used in this study

probe (Vibrionaceae), 16S rRNA sequences of rep-
resentative members of the Vibrionaceae (obtained from
GenBank; http://www.ncbi.nlm.nih.gov/) and Escherichia
coli K-12 (as the outgroup; GenBank accession number
U00096) were aligned in MacVector™ 6.5 using the
ClustalW alignment algorithm. Conserved sequences of
18-23 base pairs in length within the family Vibrionaceae
that contained at least one base difference from E. coli K-
12 were screened visually. Sequence specificity of each
candidate probe sequence was determined using the
Probe Match function in the Ribosomal Database
Project II [6], and the probe that represented the most
species within the Vibrionaceae was found at E. coli K-12
base position 749. The analogous procedure was
implemented for designing Vfsh84a and Vlog251
probes. In these cases, a number of GenBank 16S rRNA
sequences from V. fischeri strains [29] (accession
numbers AY292941, AY292938, AY292922, AY292921,
AY292920, and AY292919) were aligned against two V.
logei strains (accession numbers X74708 and AY292934),
and probe sequences were determined as above.
Stringency conditions for in situ hybridization of
each probe were empirically optimized to allow the probe
to bind only to target sequences containing zero
mismatches (Table 1). To do so, probes were hybridized
against bacterial strains with zero, one, and two mis-
matches in hybridization solutions containing various
formamide concentrations between 5-50%. The Vib749
probe was tested against V. fischeri ES114 (zero mis-
matches), Photobacterium damselae (one mismatch;
accession number X78105), and E. coli K-12 (two
mismatches). For Vfsh84a, test strains were V. fischeri
ES114 (0 mismatches), P. damselae (1 mismatch), and
Vibrio parahaemolyticus strain 113 (two mismatches;
accession number AY527396). Vlog251 was tested against
V. logei (zero mismatches; accession number X74708)
and V. fischeri ES114 (1 mismatch). All Vibrio and
Photobacterium strains were grown overnight at 28°C in
Luria—Bertani high salt solution (1% tryptone, 0.5% yeast
extract, 2% NaCl, 0.3% glycerol, and 50 mM Tris—HCI at

Probe Target group Test strain Sequence Percent formamide
Gam42a” y-Proteobacteria N/A 5'GCCTTCCCACATCGTTT 35
Vib749 Vibrionaceae V. fischeri ES114 5'TCGCATCTGAGTGTCAGT 35
P. damselae 3'AGCGUAGACUCGCAGUCA
E. coli K12 3 AGCGUGGACUCGCAGUCA
Vfsh84a V. fischeri V. fischeri ES114 5'ACGCCCTTAACGTTCCCCG 50
P. damselae 3’GGCGGGAAUUGCAAGGGGC
V. parahaemolyticus 3'UGCGGCAAUAGCAAGGGGC
Vlog251 V. logei V. logei 5'CCTTGGTGAGCTCTTACCCC 40

V. fischeri ES114

3'GGAACCACUCGAGAAUGGAG

The optimal concentration of formamide was empirically derived for Vib749, Vfsh84a, and Vlog251. Each probe was hybridized at varying concentrations of
formamide ranging from 0-50% against test strains containing zero, one, or two mismatches against the probe. The target ribosomal sequences were listed
from 3’ to 5’ for test strains containing one or two mismatches to clearly identify the location of each underlined mismatch.

2]
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pH 7.4). Escherichia coli was grown overnight at 37°C in
Luria broth (Invitrogen, Carlsbad, CA, USA).

For probe optimization hybridizations, overnight
cultures were fixed in 3% paraformaldehyde and 5 pL
spots of individual test strains were allowed to dry in
each of 10 wells (5 mm diameter) on a Teflon-treated
slide (Cel-Line Associates, Inc., Newfield, NJ, USA).
Wells were treated with 20 uL of hybridization solution
(using Cy-3-labeled probes; see below for recipe) con-
taining increasing concentrations of formamide at 5%
intervals from 5-50%. Wash steps and viewing are
described below. To determine the optimal formamide
concentration for each probe, each test strain was
examined at every formamide concentration. The opti-
mal concentration was that at which the one and two
mismatch strains showed no visible fluorescence, but the
zero mismatch strain was strongly fluorescent.

Field Sampling. =~ Water samples were collected
from field sites in O’ahu, Hawaii, on the SE coast of
Australia, and southern France for sampling. In Hawaii,
eight sites were sampled around O’ahu in March 2003
(Fig. 1). At these sites, samples were collected during the
morning low tides from waist-deep water. In Australia,
samples were collected predawn and postsunset from waist-
deep water at ten sites along the east coast between Sydney
and Melbourne in March and September 2004 (Fig. 2). For
logistical reasons, not every site was sampled during both
months. In France, samples were collected at various
depths at two research sites (Bay of Banyuls and Bay of
Elmes in Southern France; Fig. 3) in November 2003 and
August 2004. Access to conductivity—temperature—depth
recorder (CTD) and research vessels at these sites enabled
a more complete examination of the bacterioplankton. At
each site, samples were taken in triplicate.

Upon collection of 100 mL of seawater, the samples
were immediately fixed with paraformaldehyde (3% final
concentration) at 4°C for 4-12 h. After incubation, various
volumes of the sample (5 mL for the y-Proteobacteria,
10 mL for the Vibrionaceae, and 20 mL for V. fischeri and
V. logei) were filtered onto 0.2-um pore size nucleopore
filters (Whatman, Clifton, NJ, USA) coated with 0.1%
poly-L-lysine, and backed with 8-um pore size filters.
Filtration took place using a vacuum below 40 kPa. Dried
filters were stored at —20°C until hybridization.

In Situ Hybridization. ~ Fluorescence in situ hy-
bridization incorporating DC was performed on each
filter according to previous methods with minor
modifications [23]. Each filter was aseptically cut into a
square, which fit in a 15 X 15-mm Frame-Seal Incubation
Chamber (M] Research, Waltham, MA, USA) and placed
on a microscope slide. The sample was then covered with
40 pL of hybridization solution (0.9 M of NaCl, 5 mM of
EDTA, 0.5% of sodium dodecyl sulfate [SDS], 50 mM of

sodium phosphate buffer [pH 7], 10x Denhardt’s
solution (Sigma), 1 pg/uL of poly(A), and 1 ng/pL of
Cy3 or Cy5-labeled oligonucleotide) supplemented with
the appropriate formamide concentration depending on
the probe used (Table 1). The V. logei probe was labeled
with Cy-5, whereas the Vibrionaceae and V. fischeri
probes contained Cy-3. Each chamber was sealed and
placed in a DNA Engine Dyad® Peltier Thermal Cycler
equipped with a slide chamber Alpha Unit (M] Research)
at 42°C for 4 h.

After 4 h of hybridization, each filter was washed
(0.9 M of NaCl, 0.1% of SDS, and 50 mM of sodium
phosphate buffer at pH 7) for 30 min at 46°C. Filters
were rinsed in 0.2 um of filtered distilled water and air-
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Figure 1. Numbers of y-Proteobacteria, Vibrionaceae, and V. fischeri
at the eight sampling sites in O’ahu, Hawaii (see Table 3). Error bars
represent one standard deviation. There are no data available for the
Vibrionaceae estimate in Kaiaka Bay.
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Figure 2. Numbers of y-Proteobacteria, Vibrionaceae, V. fischeri, and V. logei at ten different sites during March and September 2004 in
Australia. The Y-axis represents numbers of bacteria at each site. Samples were taken in the morning at sunrise and in the evening after
sunset. Only the St. Leonard’s Pier and Botany Bay sites were sampled in the morning and evening both years. Error bars represent one

standard deviation.

dried. Immediately before viewing, filters were mounted
with ProLong Antifade (Molecular Probes, Eugene, OR,
USA). Samples were viewed with a Nikon E800 epifluo-
rescence microscope equipped with excitation/emission
filters of 546/565 for Cy3 and 620/700 for Cy5. Samples
were counted manually and a total of 30 random fields
and at least 400 cells were counted for each probe in every
sample. When Cy5 was used, samples were enumerated
by counting from pictures taken with a CCD camera.

Results

Probe Development and Optimization. The
Vibrionaceae, V. fischeri, and V. logei probes were found
to have optimal formamide concentrations of 35, 50, and
45%, respectively. Database searches and sequences from
our own laboratory strains found the V. fischeri probe to
be specific for all known symbiotic V. fischeri strains.
Database searches also found that the V. fischeri probe
also hybridizes to Vibrio orientalis, Vibrio hepatarius,

and Vibrio agarivorans. The V. logei probe also hybridizes
to an uncultured marine y-Proteobacterium, Aquicella
lusitana, and Oscillatoria limnetica. Given the lack of 100%
specificity to only V. fischeri and V. logei by these probes,
the numbers presented in this study may be slight
overestimates of actual populations.

The Vibrionaceae probe outperformed two previous-
ly constructed probes by Amann et al. [2] and Nishimura
et al. [30] for estimating total number of species hy-
bridized (Table 2). Whereas the probe of Amann et al.
recognized amore species of Enterovibrio and Photo-
bacterium, the probe developed in this study recognized
more species of Vibrio, Listonella, and unclassified species
of the Vibrionaceae.

Field Test. In Hawaii, total numbers of Vibrio-
naceae ranged from 3.6 x 10° to 1.2 x 10> cells/mL, and
the percentage of Vibrionaceae that was V. fischeri ranged
from 17 to 31% at sites not known to harbor large
numbers of E. scolopes (Kaiaka Bay, Laniola, Keaniani
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Figure 3. Community numbers at Banyuls and Elmes field sites in France. White colored bars are from the field season in November 2003,
whereas black bars are from August 2004. There was no sampling at 15 m at the Elmes field site in August 2004. Error bars represent one
standard deviation.
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Table 2. Comparison of published Vibrionaceae family specific probes

Vibrio Photobacterium Listonella Enterovibrio Salinovibrio Unclassified
VIB749 53.5 4.4 51.0 0.0 0.0 22.3
GV 30.8 26.6 44.5 1.6 0.0 21.2
Vir1? 48.2 4.4 30.3 0.0 0.0 15.7

Each cell lists the percentage of sequences in the five genera that are 100% complimentary to the three probes. Sequences were gathered from the Ribosomal
Database Project I, release 9.34. Numbers in bold indicate the highest percentage within each genus.

“12].
®[30].

Point, Eastern Point, and Waikiki; Fig. 1 and Table 3).
Sites containing stable populations of E. scolopes (N.
Kaneohe, S. Kaneohe, and Paiko) had approximately 44 to
70% of the Vibrionaceae that were identified as V. fischeri.
The total number of V. fischeri ranged from 0.6 x 10> to
8.6 x 10* cells/mL among the different sites sampled in
Hawaii (Fig. 1). Vibrio logei was not detected in Hawaiian
waters.

In Australia, bacterial populations were relatively
constant between sites and between morning and
evening sampling times (Fig. 2), with two notable
exceptions being the September 2004 AM samples for
Botany Bay and Crib Point. Within the y-Proteobacteria,
populations were similar to France sites, with the
exception of Narooma, Malacoota, and Sanctuary Point,
which had very low numbers. Comparatively low
numbers of Vibrionaceae were also observed at these
sites. Vibrio fischeri distribution exhibited pronounced
variation in cell density, with the highest numbers
enumerated from Botany Bay. Vibrio logei numbers were

Table 3. Sites sampled in this study

lower than V. fischeri, and exhibited no apparent trends
between seasons (Fig. 2).
Conductivity—temperature—depth recorder sampling
in France enabled depth profiling of communities at
different temperatures and salinities (Figs. 3 and 4). The
summer thermocline generally resulted in a decrease
from about 21 to 14°C. One-way analysis of variance
(ANOVA) failed to reject the null hypothesis of no
difference in cell numbers at different depths for each
nested group of bacteria at both France sites (p values
ranging from 0.29 to 0.64), which meant there was no
apparent reduction or increase in community numbers
across the thermocline. Numbers did, however, differ
significantly between the summer and winter sampling
times, as the null hypothesis of no difference in cell
numbers between seasons was rejected for Vibrionaceae,
V. fischeri, and V. logei using ANOVA (p<0.001 for each
sample, except for the y-Proteobacteria where p =0.007).
The most notable difference in cell numbers was within
the Vibrionaceae, V. fischeri, and V. logei. There was

Site name Latitude Longitude
Hawaii Kaiaka Bay N 21°34/56" W 158°07'46"
Laniola N 21°38'31” W 157°55'02"
Keaniani Point N 21°33/50" W 157°52/23"
N. Kaneohe N 21°29'31"” W 157°50'47""
S. Kaneohe N 21°25'45" W 157°47'32"
Eastern Point N 21°19'01” W 157°39'51"
Paiko N 21°16'49" W 157°43'49"
Waikiki N 21°16'10” W 157°49/23"
Australia Kelso Point S 41°3/24"” E 146°47'52"
St. Leonard’s Pier S 38°10'14" E 144°43'8"
Black Rock Jetty S 38°13/37" E 145°01'29"
Crib Point S 38°21'01" E 145°13'11"
Metung S 37°53/02" E 147°58'35"
Narooma S 33°29'05" E 150°06'54"
Malacoota S 37°33/59" E 149°45'59"
Sanctuary Point S 35°06 E 150°39
Botany Bay S 34°00/ E 151°12
Heron Island S 23°26/53" E 151°55'49"
France Banyuls N 42°35'29" E 3°02'57"
Flmes N 42°37'35" E 3°02/22"

In Hawaii and Australia samples were taken from surface waters approximately 20 m offshore. In France samples were taken at various depths from boat

using a CTD.
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Figure 4. Representative salinity and temperature profiles from France study sites during the summer sample period (A) and the winter
sample period (B). Note the lack of the thermocline during the winter.

approximately a tenfold difference in total counts of
these groups of bacteria at both sites between seasons.

Discussion

Fluorescence in situ hybridization, a technique common-
ly used to examine microbial communities [1, 2, 7-9,
23], has provided a wealth of information to researchers
through “snapshots” of microbial populations. Fluores-
cence in situ hybridization has been successfully applied
to oceanographic studies examining bacterioplankton,
and has provided tremendous insight as to how these

communities are structured [10-14]. Although past
studies have mainly focused on the a-Proteobacteria, it
is interesting to note that members of the Vibrionaceae
still constitute a large proportion of the bacterioplankton
community in the areas we were able to sample, with or
without the presence of squid hosts. This strengthens the
fact that multiple factors (abiotic and biotic) are
probably responsible for trends in the distribution of
any division of bacteria, particularly vibrios.

Results from the Hawaiian dataset confirm previ-
ous reports [20, 21], which exhibited greater numbers of
V. fischeri in the water column within the Kaneohe Bay
study sites (Fig. 1). This bay is known to harbor large
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numbers of E. scolopes, and daily expulsion of V. fischeri
may explain the elevated levels. In addition, this location
also contains a large number nutrient inputs from
streams entering the Bay, which may allow certain species
of bacteria to flourish in these waters [16]. The Paiko site
also had statistically significant numbers of V. fischeri.
This site is also a common E. scolopes collection location,
but because Paiko is not a bay it is more open to ocean
currents than Kaneohe. These currents may flush out
excess vibrios, preventing the increased accumulation
observed in North and South Kaneohe Bay.

The results presented in this study also demonstrate
a marked increase in numbers of V. fischeri detected in
Hawaiian waters compared to previous studies [20, 21].
Specifically, Lee and Ruby [21] found the abundance of
V. fischeri to be between 276—400 cells/mL based on
luxA quantitative DNA-DNA hybridization and between
130-1680 cells/mL based on most-probable-number
analysis using luxA-specific primers for polymerase
chain reaction from cell lysates. Indeed, the lowest
estimate of V. fischeri abundance at Eastern Point
(600100 cells/mL) falls into the high end of the
estimates of Lee and Ruby [21]. This could be because
of binding of the probe to complementary sequences
from bacterial species other than V. fischeri that were
not catalogued in the Ribosomal Database Project.

Australian total numbers of all bacterial samples
probed compared similarly to Hawaiian estimates of y-
Proteobacteria, Vibrionaceae, and V. fischeri presented
in this study (Fig. 2). Within the Vibrionaceae, however,
the percentage of the Vibrionaceae that was V. fischeri
was much lower than Hawaiian estimates. Reasons for
this discrepancy are unclear, but because Australian and
Hawaiian habitats are geographically separated and
ecologically distinct, there is no reason to expect that
the bacterial communities in these areas should be
structured in a similar manner, nor follow patterns that
link Vibrio concentration to host squid number.

Numbers of V. fischeri in Botany Bay are of
particular interest because of the aims of this study.
Although specific population size of the sepiolid host is
unknown in this area, Botany Bay is a common
collection site because of the abundance of Euprymmna
tasmanica. Much like Kaneohe Bay in Hawaii (but on a
much greater scale), Botany Bay is a large enclosed body
of water in which numbers of vented V. fischeri could
accumulate. In this population, numbers of V. fischeri
are greater than every other site, with the exception of
Kelso Point (another site where E. tasmanica is com-
monly collected) in Tasmania. In addition, the morning
V. fischeri numbers are greater than those collected in
the evenings at these sites. At these locations, the
presence of E. tasmanica may be the reason for this
phenomenon, although no causal relationship can be
inferred with the present data.

In France, there were greater numbers of all groups
of bacteria detected in the November sampling season
(Fig. 3). In general, the greatest discrepancies between years
were observed when comparing Vibrionaceae, V. fischeri,
and V. logei, whose November populations were much
higher than the summer populations. Greater availability of
nutrients during the winter when the thermocline is absent
and less competition from other bacteria during this time
may account for this general increase in Vibrio numbers.

Population structure of the symbiotic bacteria V. fischeri
and V. logei was not affected by depth at Banyuls-sur-mer
or Bay of Elmes study sites during the two seasons samples
were collected. This is counterintuitive for a number of
reasons. First, it is known that light organs of sepiolid
squids from greater depths tend to have a higher
proportion of the cold-adapted V. logei than the more
warm-adapted V. fischeri [28]. Second, there is a predom-
inant thermocline in summer months, which prevents
mixing of deep, cold waters with warm surface waters at
both study sites (Fig. 4). In late autumn, the thermocline
disappears, and waters become a homogeneous mixture.
Given this information, it was hypothesized that V. logei
would be more abundant than V. fischeri in deep waters
below the thermocline in summer months because of
increased expulsion of V. logei by deep water sepiolid
squids and increased growth rates over V. fischeri in these
colder waters. The analogous hypothesis was made for
V. fischeri distribution in warmer waters above the
thermocline. Given the data, the hypotheses were clearly
rejected, as no depth-related differences were observed.

There are several factors that may explain why these
differences were observed. First, during the summer
months in Southern France, periods of periodic winds
known as the mistral can produce heavy gusts that can
potentially disrupt the thermocline for short periods of
time (1-4 days). If the thermocline is continually
disrupted throughout the sampling period, bacterial
temperature-related distribution patterns would disappear
or at least be transient. The second possibility is that
there is no temperature-dependent distribution of V.
fischeri and V. logei associated with the thermocline.
Given that sepiolid squid light organs are environmen-
tally colonized upon hatching, this may infer that
initial colonization might be equally parsimonious for
either V. fischeri or V. logei, and subsequent dominance
in the organ could be because of V. logei outcompeting
V. fischeri at colder temperatures in a high nutrient
environment where the squid resides. This was demon-
strated in vitro with two species of Mediterranean sepiolids,
Sepiola affinis and Sepiola ligulata with both V. fischeri and
V. logei [28]. Thus, the symbiosis is probably more specific
once infection has occurred by one of the two symbiont
species available in the Mediterranean.

In conclusion, there appears to be multiple factors
that structure bacterioplankton community composition
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in natural environments. Whereas overall bacterial num-
bers were similar between Australia, France, and Hawalii,
fine-scale processes appear to influence bacterial commu-
nity structure in both space and time. Our hypothesis that
sepiolid squid presence influences bacterial community
structure was supported to an extent, but future sampling
efforts will need to take into account as many abiotic and
biotic factors (including temperature, salinity, dissolved
organic matter, blooms of other species, bacterivory, etc.)
for an increased understanding of what determines micro-
bial community structure. Other studies with molluscan
and vertebrate hosts have demonstrated that salinity and
temperature influence a number of factors [3, 18, 25, 26],
which not only influence colonization, but also the phys-
iological state of Vibrio species in the water column. Thus,
deciphering the mechanisms of how the ecology of squid
hosts and their Vibrio symbionts affect their surrounding
habitat and whether they are influential players in the
overall microbial community structure are important
aspects that still need to be addressed in future studies.
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