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Euprymna scolopes, a Hawaiian species of bioluminescent squid, harbors Vibrio fischeri as its specific light
organ symbiont. The population of symbionts grew inside the adult light organ with an average doubling time
of about 5 h, which produced an excess of cells that were expelled into the surrounding seawater on a diurnal
basis at the beginning of each period of daylight. These symbionts, when expelled into the ambient seawater,
maintain or slightly increase their numbers for at least 24 h. Hence, locations inhabited by their hosts
periodically receive a daily input of symbiotic V. fischeri cells and, as a result, become significantly enriched
with these bacteria. As estimated by hybridization with a species-specific luA gene probe, the typical number
of V. fischeri CFU, both in the water column and in the sediments of E. scolopes habitats, was as much as 24
to 30 times that in similar locations where squids were not observed. In addition, the number of symbiotic V.
fischeri CFU in seawater samples that were collected along a transect through Kaneohe Bay, Hawaii, decreased
as a function of the distance from a location inhabited by E. scolopes. These findings constitute evidence for the
first recognized instance of the abundance and distribution of a marine bacterium being driven primarily by
its symbiotic association with an animal host.

Vibrio fischeri is a marine luminous bacterium that is found
both within the light-emitting organ of the Hawaiian sepiolid
squid Euprymna scolopes (3, 26) and as one of several species
of luminous bacteria that occur in the bacterioplankton of
Kaneohe Bay, Hawaii (12). The symbiotic isolates, as well as
most of the planktonic isolates, of Hawaiian V fischeni are
distinctive in that they do not produce visibly luminous colo-
nies on laboratory media, although they become brightly
luminous after colonizing the light organ of a host squid (3, 6).
Thus, in a previous study, colony hybridization with specific
gene probes was used to determine that these non-visibly
luminous V fischeni occur at a relatively high concentration in
seawater collected from Kaneohe Bay (12). This study also put
forth the hypothesis that the abundance of these non-visibly
luminous V fischeni isolates might be related to. the cooccur-
rence of their host, E. scolopes.
A single adult E. scolopes squid (i.e., one with a mantle

length greater than about 10 mm) contains a population of
between 107 and 109 V. fischeni cells in its light organ (21).
Because luminous bacteria typically occur at concentrations of
only a few tens to hundreds of cells per 100 ml of coastal
seawater (19, 22, 24), a single squid can contain a number of V.
fischeri cells equivalent to that found free-living in 10,000 m3 of
seawater. The light organ of E. scolopes has pores (15, 16)
through which it can communicate with the ambient environ-
ment, and laboratory experiments have shown that adult squids
release a large number of their symbionts into seawater (11,
21). Thus, depending on the frequency of expulsion of symbi-
onts and the extent of their subsequent proliferation, survival,
and dispersal, these released symbiotic V. fischeni cells could
greatly increase the number of luminous bacteria present in
natural animal habitats.

In this study, we investigated the hypothesis that the abun-
dance and distribution of at least one class of marine micro-
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organisms, symbiotic V fischeri, are controlled by the dynamics
of their relationship with their host. This hypothesis was tested
by determining the pattern and degree of symbiont release and
by examining the fate of released symbionts in ambient seawa-
ter. In addition, the abundance of symbiotic V fischeni was
determined both at locations in Kaneohe Bay that either are or
are not inhabited by E. scolopes and at points on a transect
leading away from a known animal habitat. The patterns that
we detected point to a direct correlation between the abun-
dance of non-visibly luminous V fischeni in seawater and
sediments and the presence and behavior of its animal host.

MATERIALS AND METHODS

Symbiont expulsion experiments. To determine the natural
pattern of their symbiont expulsion, adult squids were col-
lected in Kaneohe Bay and placed in aquaria, for 1 day,
typically without food to decrease the number of extraneous
bacteria expelled into the seawater from their enteric tracts.
Each squid was then incubated under natural daylight condi-
tions in 2 liters of Kaneohe Bay seawater that had been
sterilized by passage through 0.22-p.m-pore-size filters. Every 2
h, the number of V. fischeri CFU present in the incubation
seawater was determined by spreading an aliquot on a nutri-
ent-rich agar medium (SWT agar) containing 0.5% tryptone,
0.3% yeast extract, and 0.3% glycerol in 70% seawater (17). At
the same time, the luminescence of 10-ml aliquots of this
incubation seawater was measured with a sensitive photometer
(Luminescence Photometer, model 3000; Biospherical Instru-
ments, Inc.).
Almost all of the colonies arising from the squids during

incubation in sterile seawater were V. fischeni, as determined by
the criteria of colony morphology and DNA-DNA hybridiza-
tion of colony lifts with a V. fischeri-specific luxA gene probe
(12). About 14 h after the incubation began, a few new colony
types typically appeared in the water samples; however, even
then the V fischeri colonies remained numerically dominant.
The number of symbiotic V fischeni CFU present in adult E.
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FIG. 1. Map of sampling sites in Kaneohe Bay. Four coastal
locations are indicated, including two (Al and A2) at which E. scolopes
was often encountered, and two (Ni and N2) where the animals have
never been observed. Seven transect locations (between site 1 and site
7) lie within the southeast channel connecting the bay to offshore
waters. The arrows represent the main water flows into and out of the
bay in each tidal cycle.

scolopes light organs was determined from light organ homo-
genates as previously described (21).

In a few instances, we used animals that had been fed a
normal diet of shrimp before the experiment. Only slightly
more symbionts were found in the light organs and in the
seawater in which such animals were maintained; therefore,
the 1-day starvation did not appear to significantly affect the
quantity of symbionts expelled.

Proliferation and survival of symbiotic V. fischeri in seawa-
ter. V. fischeri ES114, isolated from an adult E. scolopes light
organ (3), was used to examine the symbiont's potential for
proliferation and survival (i.e., maintenance of culturability)
during incubation in seawater. Colonies of ES114 freshly
grown on SWT agar were resuspended in filter-sterilized
seawater to an optical density (at 600 nm) of approximately 0.5.
Dilutions of this suspension were inoculated into seawater that
had been collected from site 1 in Kaneohe Bay (Fig. 1) and had
been passed through a 0.2-,um-pore-size Nuclepore filter under
a mild vacuum (less than 250 mm Hg [1 mm Hg = 133.322
Pa]). Changes in the number of CFU of ES114 were monitored
by spreading dilutions of the suspensions on SWT agar and
incubating them for 24 h at 24 to 26°C.
A rifampin-resistant derivative of strain ES114, designated

ESR1 (5), was inoculated into 500 ml of either 0.2-,um-filtered,
5 ,um-filtered, or unfiltered seawater collected from either site
1 or the offshore location, site 7 (Fig. 1). These ESR1 cells
were practically the only ones to form colonies on SWT agar
containing rifampin (100 ,ug/ml), and thus they were easily
counted on plates spread with aliquots of seawater that
contained natural assemblages of microorganisms (i.e., unfil-
tered and 5-[Lm-filtered seawater).
To obtain symbionts that had been freshly expelled, an adult

squid was incubated in 500 ml of filter-sterilized seawater for a
12.5-h period beginning just prior to daybreak. Two milliliters
of this seawater was then inoculated into 200 ml of filter-
sterilized seawater, and the numbers of V fischeri CFU present
were determined later in three independent experiments.

Sampling and processing of seawater and sediment sam-
ples. Between 1989 and 1992, numerous water samples were
collected at depths of between 20 and 30 cm from several
locations in Kaneohe Bay (Fig. 1), including (i) nearshore

areas inside the bay (Al, A2, Ni, and N2) and (ii) transect
points in the southeast channel of the bay between sites 1 and
7. Surface (upper 0.5 cm) sediment samples were also collected
from the four nearshore locations (Al, A2, Ni, and N2) and
were mixed with an equal volume of sterile seawater, disrupted
for 15 s by isothermal sonication (W-370 Sonicator; Heat
System-Ultrasonics, Inc.), and cleared of large particles by
low-speed centrifugation for 10 s.

Different volumes of these seawater and sediment samples
were filtered through 0.45-[Lm-pore-size membranes (Milli-
pore Corp., Bedford, Mass.) and incubated on the surface of
SWT agar plates. Luminous colonies were enumerated, and
individual ones were picked and taxonomically assigned by
using the criterion of growth on minimal medium agar plates
containing either lactate, maltose, mannitol, gluconate, or
cellobiose as the sole carbon source (17). Colonies arising on
other filters were also processed for hybridization as described
previously (12). A V fischeii-specific luxA gene sequence
amplified from the genomic DNA of strain ES114 by the PCR
was used as the probe (27). Such isolates from Hawaiian
seawater have all been shown to be symbiosis-competent V.
fischeri (12) and to be most closely related to strains directly
isolated from E. scolopes light organs (11).

RESULTS

Expulsion of symbiotic bacteria from the host. When indi-
vidual adult E. scolopes squids were maintained under condi-
tions of cyclic illumination (12 h of light and 12 h of darkness),
a rapid increase in the concentration of symbiotic V fischen
cells in the surrounding seawater was observed at the begin-
ning of each light period (Fig. 2A). The appearance of bacteria
occurred at the same time (relative to the light-dark cycle)
regardless of when the squid was placed in the incubation
chamber, suggesting that the phenomenon was on a diurnal
cycle. Because the abundance of the bacteria rose by a factor of
104 (from <5 to >50,000 CFU/ml) in less than 2 h, the increase
had to have been due to expulsion of symbionts from the squid
light organ rather than due to growth of bacteria already
present in the water. This expulsion event was also easily
detected as a punctuated, yet transitory, increase in the
luminescence of the seawater that occurred once each day,
coinciding with the time of symbiont expulsion (Fig. 2B).
Because the level of luminescence of expelled V fischeri
symbionts has been reported to decrease by a factor of over
100 within 3 h of release from the light organ (3), the
luminescence of the incubation seawater was due primarily to
recently expelled symbionts and is therefore a convenient
indication of their release. Thus, squids appear to actively
expel excess symbiotic V fischeri cells in a discrete episode that
is coincident with daybreak and lasts for no more than an hour
or two.

In four separate experiments, we quantified the total num-
ber of symbionts released during an expulsion event, using 13
medium-sized adult squids (i.e., those with mantle lengths of
between 8 and 12 mm) collected over a period of 2 years. The
average number of V fischeri CFU appearing in the surround-
ing seawater during each 24-h period (from one morning to the
next) was 5.1 x 108 CFU per squid per day (Table 1). To
obtain an estimate of the number of symbionts remaining in
the light organ after an expulsion event, some of these squids
were dissected, and dilutions of the light organ homogenates
were spread on SWT agar plates. The number of symbionts
inhabiting the light organ of one of these medium-sized squids
averages about 107 CFU (21), which suggests that over 95% of
the symbiotic cells were expelled each morning. These values
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FIG. 2. (A) Changes in the numbers of V fischeri CFU expelled

from a squid placed in an incubation chamber at the beginning of the
light period (closed circles) and a squid placed in the incubation
chamber at the beginning of the dark period (open circles). Error bars
indicate standard deviations. (B) Luminescence of the freshly expelled
symbiotic bacteria. One luminescence unit is equal to 103 quanta per s,
and the photometer background reading (dark current) was between
20 and 50 luminescence units. The horizontal bar at the bottom of the
figure indicates the periods of darkness (closed portions) and light
(open portions) during the incubation.

could also be used to calculate the average generation time of
symbionts within the light organs as described by the equations
= (lnN - lnNo)/(t - to) and g = ln2/,u (where is the

growth rate, N is the number of cells at time t, No is the number
of cells at time to, and g is the generation time [or doubling
time]). Thus, inside the light organs of its hosts, symbiotic V
fischeri appears to double its numbers at an average rate of
once every 4.8 h (Table 1).

Survival of expelled symbionts. When diluted into filter-
sterilized seawater collected from Kaneohe Bay, laboratory-
grown cells of V. fischeri ES114 increased to a maximum
density of about i05 CFU/ml (Fig. 3). The number of CFU per
milliliter rose rapidly before reaching this value and then
stabilized for at least the next 60 h. When the viable cell density
was measured 19 days later, 10 to 15% of these ES114 cells
were still present as CFU (data not shown). To determine
whether V fischeri cells that were freshly expelled from the
light organ exhibited the same behavior as laboratory-cultured

TABLE 1. Expulsion of symbiotic V fischeri by adult
E. scolopes squidsa

Expelled Net

Expth No. of squids symbionts doublingtested (108 CFU)I ie()
squidctm ()

I 2 1.8 6.2
II 5 10.5 3.6
III 2 2.2 5.2
IV 4 6.0 4.1

Mean ± SD 5.1 ± 3.5 4.8 ± 1.0

a Adult squids tested ranged between 8 and 12 mm in mantle length.
b Each experiment was done with squids collected at different sampling times

during 1991 and 1992.
' CFU of symbiotic V fischeni in filter-sterilized seawater containing a squid for

at least 24 h were measured in the early morning (see Materials and Methods).
dDoubling times were calculated on the basis of an average remaining

population of 107 CFU per light organ (see Results).

V fischeni, we diluted 2 ml of seawater containing about 106
CFU of newly expelled symbionts per ml into 200 ml of
filter-sterilized seawater. Again, the density showed an initial
rapid increase to about 105 CFU/ml, and these cells remained
culturable for at least 60 h (Fig. 3). This result suggested that
naturally expelled symbionts are neither more nor less suited
to survive in seawater than laboratory-cultured cells.
Although symbiotic V fischeni cells can proliferate and

maintain their numbers in filter-sterilized seawater from near-
shore squid habitats, a different response was seen when cells
were diluted instead into unsterilized seawater, which con-
tained a natural mixture of indigenous heterotrophic bacteria
and predatory protists. In these experiments, strain ESR1, a
rifampin-resistant derivative of strain ES114, was used as the
V fischeri inoculum because it was easier to select and
enumerate CFU of ESR1 when they were present in aliquots
of natural seawater that were spread on SWT agar supple-
mented with rifampin. While, as with strain ES114 (Fig. 3),
dramatic growth and proliferation followed dilution of ESR1
cells into seawater that had been filter sterilized by passage
through a 0.2-p.m-pore-size membrane, a different pattern
occurred after dilution of these cells into either unfiltered
seawater or 5-p.m-filtered seawater (Fig. 4). Although cells in
all of the inocula proliferated after dilution, the apparent net
doubling times during the first 24 to 36 h were approximately
three times longer in both the unfiltered and the 5-p.m-filtered
seawater than in the 0.2-p.m-filtered (filter-sterilized) seawater.
In addition, the maximum density of ESR1 reached only about
150 CFU/ml under the first two conditions, compared with a
concentration of almost 105 CFU/ml in the filter-sterilized
seawater (Fig. 4).

After an incubation of 77 h, there were 57 and 29%
decreases from the maximum density of CFU reached in the
unfiltered and 5-p.m-filtered seawater, respectively, while no
such decrease was observed in the filter-sterilized seawater.
Interestingly, there was an even more dramatic decrease in
CFU of ESR1 diluted into seawater collected from site 7 (Fig.
4), an offshore location (Fig. 1).

Distribution of V.,fischeri cells in squid habitats. The results
of the experiments described above suggested that significant
expulsion and subsequent proliferation and maintenance of
symbionts occur in seawater containing symbiotic squids. Thus,
one might predict a high abundance of symbiotic V fischeri in
those natural environments like Kaneohe Bay that are inhab-
ited by E. scolopes. Therefore, we enumerated V fischeri CFU
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FIG. 3. Changes in concentrations of V. fischeri ES114 (closed circles) and of freshly

0.22-p.rm-filtered seawater. Error bars indicate standard deviations.

in water and sediment samples collected from four locations:
two sites (Al and A2) at which E. scolopes was frequently
encountered ("animal habitats") and two others (Ni and N2)
at which we have never found E. scolopes ("no-animal habi-
tats") during our 3-year study. All of the sites were located
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FIG. 4. Changes in concentrations of V fischeri ESR1 incubated in
0.2-p.m-filtered (squares), 5-p.m-filtered (triangles), and unfiltered
(closed circles) seawater collected from an animal habitat, site 1, and
changes in CFU of V fischeri ESR1 incubated in natural seawater
collected from outside Kaneohe Bay at site 7 (open circles). The
locations of these sites are indicated in Fig. 1. Error bars (when larger
than the symbol) indicate standard deviations.

expelled symbionts (open circles) incubated in

about 10 m from shore in water about 1 m deep overlying
mixed coral sand and mud sediments.
Both seawater and sediments from animal habitats were

enriched with non-visibly luminous V. fischeri (Table 2). Spe-
cifically, V fischeri was present at average densities of 2.1 and
0.46 CFU/ml of water and 148 and 31 CFU/ml of sediment at
locations Al and A2, respectively, while only 0.07 and <0.33 V.
fischeri CFU/ml of water and < 14 and <6 CFU/ml of sediment
were estimated to be present at locations Ni and N2, respec-
tively. Thus, in both water samples and sediment samples, the
average abundance of V. fischeri in animal habitats was greater
than in no-animal habitats. In contrast, the patterns of abun-
dance of other luminous bacteria (identified as the closely
related species Vibrio harveyi and Photobacterium leiognathi)
showed no such differences between the two pairs of sites

TABLE 2. Abundance and distribution of luminous bacteria in
samples taken at different locations in Kaneohe Baya

Mean CFU/ml of sample ± SE (n)

Loca- Water column Sediment
tion

Luminousb Non-visibly Luminous Non-visibly
luminousc luminous

Al 0.33 ± 0.04 (21) 2.1 ± 0.62 (15) 15 ± 2.5 (4) 148 + 73.5 (4)
A2 0.34 ± 0.10 (6) 0.46 ± 0.10 (2) 52 ± 19.6 (3) 31 ± 19.8 (2)
N1 0.23 ± 0.02 (3) 0.07 ± 0.02 (3) 30 ± 14.1 (2) <14 (3)
N2 1.00 (1) <0.33 (2) 15 ± 3.5 (2) <6 (2)

" While large populations of squids were found to inhabit locations Al and A2,
no squids were ever seen at locations NI or N2 between 1990 and 1992. Samples
of seawater and sediment were collected between 1989 and 1992 and processed
as described in Materials and Methods.

b Luminous colonies were identified as arising primarily from cells of V harveyi
and P. leiognathi.

c Several values were below the detection limit of the plating. Data refer to
non-visibly luminous V. fischeri.
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TABLE 3. Effect of proximity to an E. scolopes habitat on the
abundance of luminous bacteria in seawater

Mean CFU/100 ml of seawater
Site Distance sample t SE (n)Sie (kin)a"

NVL V. fischenb Visibly luminousc

1 0 177 ± 48.2 (21) 27 ± 4.2 (20)
2 0.09 40 ± 10.6 (7) 43 ± 18.5 (7)
3 0.14 22 ± 6.3 (5) 39 ± 9.8 (7)
4 0.86 9.1 ± 4.6 (3) 56 ± 15.5 (4)
5 0.98 8.0 ± 2.0 (4) 43 ± 9.0 (9)
6 1.60 5.6 ± 2.1 (2) 67 ± 2.8 (2)
7 3.11 3.2 ± 2.3 (3) 10 ± 3.1 (5)

aDistance from site 1, a squid-containing location, on the path indicated in Fig.
1.

b Symbiotic-type, non-visibly luminous (NVL) V. fischeri. Values that were
below the limit of detection were not included in the calculations.

c Luminous CFU were identified as arising from cells of V. harveyi and P.
leiognathi.

(Table 2). Thus, there was no evidence that whatever factors
led to an increased abundance of V. fischeri in animal habitats
were reflected in a higher concentration of nonsymbiotic
luminous bacteria as well.

Symbiotic bacteria expelled into animal habitats are subject
to subsequent dispersion to other locations by water move-
ment. Seawater enters and leaves Kaneohe Bay tidally through
two major channels (Fig. 1) located at the northeast and
southeast basins of the bay (2). We examined whether there
was a gradient of V. fischeni CFU extending from a well-
characterized animal habitat (site 1) along a transect passing
through the southeast channel to a location outside the bay
(site 7). The average abundance of nonsymbiotic luminous
bacteria in seawater samples varied less than sevenfold among
the seven sites examined, with the lowest concentration (10
CFU/100 ml) occurring offshore at site 7 (Table 3). In contrast,
the average density of V fischeni CFU decreased exponentially
as a function of the distance from site 1 to a value that was over
50-fold lower at site 7. The fact that the average density of V.
fischeri CFU within the southeast channel (site 6) was three
times higher in an outgoing tide (8.4 CFU/100 ml) than in an
incoming tide (2.8 CFU/100 ml) further suggested that the
primary source of these V. fischeri CFU was inside the bay.

DISCUSSION
A fundamental, yet often poorly understood, factor in the

evolution of microbial associations is the extent to which the
host controls the abundance and population genetics of its
symbionts. For example, ecological studies of bacterial root
nodule symbionts (e.g., Rhizobium spp.) occurring free in soil
have suggested that several factors affect their abundance and
distribution. Among these are temperature, acidity, water
potential, and the nature of other indigenous microorganisms
(1). However, a major factor that determines long-term pat-
terns of Rhizobium distribution is the cooccurrence of their
specific legume hosts (28); i.e., the introduction of the appro-
priate host species eventually results in an elevated abundance
of the corresponding Rhizobium species in the surrounding
soil, especially within the host's rhizosphere, presumably due
to release of viable cells from the root nodules (9) and/or
stimulation of growth of bacteria in the rhizosphere.
There have been fewer studies of the effects that hosts exert

on the ecology of their bacterial symbionts in aquatic environ-
ments. While some suggestions of a link between the abun-
dance of the host and that of the symbiont have been made for

other associations (4), the most extensive studies have focused
on luminous bacteria and their light-organ-bearing hosts. Ruby
et al. (22) documented a depth-related distribution of Photo-
bacterium phosphoreum, the specific symbiont in the light
organs of bathypelagic fishes, and suggested that the symbiotic
associations between this bacterium and mid-water luminous
fishes contribute to the specific abundance of P. phosphoreum
at mid-water depths. However, evidence for this hypothesis
remains absent because no experimental approach was possi-
ble with deep-sea host species. A subsequent study has ob-
served a continuous release of symbiotic luminous bacteria
from the light organs of shallow-water species of monocentrid
and anomalopid fishes maintained in a laboratory (7). The
number of symbionts released into the water (106 to 108 cells
per h per animal) led Nealson et al. (18) to suggest that
symbiotically bioluminescent fishes could be a major source of
planktonic luminous bacteria in seawater. Unfortunately, the
irregular pattern of this release allowed the authors to estimate
only that in the light organ the symbiont population doubled
in number somewhere between once every 7 h and once every
135 h.
Adult E. scolopes squids also release their luminous symbi-

onts, but in a much more predictable pattern. The single
expulsion event that occurred each dawn (Fig. 2) suggests a
dynamic and highly regulated modulation of the level of
bacterial colonization in the host light organ. Because it
apparently uses bioluminescence only at night (23), E. scolopes
maintains its bacterial symbionts when they are needed and, as
daylight approaches, expels a large portion of its population
(perhaps to reduce the nutritional demands of the symbionts),
probably by contracting muscle fibers of the lens overlying the
light organ (8). During the day, the bacterial population of the
adult host is restored by subsequent growth with a mean
doubling time of about 5 h. Interestingly, this doubling time is
three to four times longer than the apparent growth rate of the
luminous bacterial population within the light organs of juve-
nile E. scolopes squids (21), suggesting that there is a significant
difference in the ways in which the host controls symbiont
colonization at different stages in its development.

Because a single adult E. scolopes squid expels about 5 x
108 bacterial cells into the ambient environment each day
(Table 1), the habitats of this squid species must receive a
significant input of cells of symbiotic V. fischeri. Once expelled,
these cells can subsequently proliferate over a period of hours.
When placed in either natural (unfiltered) or 5-,um-filtered
seawater, V. fischeni cells increased in number with a net
doubling time of between 10 and 13 h. This is similar to the 9-
to 13-h doubling time that was previously estimated for the
total bacterial population in Kaneohe Bay seawater by a variety
of methods (10). In contrast, the net amount of V. fischeni
symbiont accumulation was much greater, and the rate of
accumulation was much higher, in filter-sterilized seawater,
where during the initial 30 h the cell density increased to about
5 x 104 CFU/ml, with a net doubling time of about 4 h (Fig.
4).

Symbiotic V. fischeri cells also maintain their numbers in
Kaneohe Bay seawater after this initial period of proliferation.
Continued incubation in natural and 5-,um-filtered seawater
resulted in only a gradual decrease in CFU density, while in
filter-sterilized seawater the density of CFU of V. fischeni
continued to increase. These cells sustained their maximal
number (105 CFU/ml) for as long as 70 h and remained
detectable even after 19 days. The different kinetics of growth
and persistence of V. fischeni CFU in the three Kaneohe Bay
seawater experiments (Fig. 4) might be attributed to differ-
ences both in competition for nutrients with other heterotro-
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phic bacteria and in the degree of predation by small flagellates
(25), which were present in the natural seawater and were not
removed by the 5-,um-pore-size filter.

It is not known why, in general, sediment samples from the
animal habitats contained about 100 times more V fischeri
CFU per milliliter than the overlying seawater samples. It is
possible that this enrichment resulted from the behavior of E.
scolopes: these squids are typically buried in the sandy sedi-
ment in the early morning, when they expel their symbionts
(Fig. 2). Alternatively, it may reflect the tendency of some
Vibrio spp. to attach to particles (14). It should also be noted
that all of the bacterial dynamics described here reflect only
the presence of cells that are capable of forming colonies on
the isolation medium used. The actual abundance of V. fischeri
cells in seawater might well be different from the number of
CFU per milliliter if they entered a physiological state different
from that in the laboratory culture and did not produce
colonies on nutrient-rich media. The possibility of this so-
called "viable but nonculturable" state (20) of V fischeri in
natural seawater is being studied. The preliminary results have
suggested that many more nonculturable symbionts were
present at site 1 than at site 7 (13).

If the expulsion and subsequent proliferation of expelled
symbionts are a significant source of V fischeni cells, one would
predict that (i) locations inhabited by E. scolopes would have
higher V fischeri densities than locations with no squids and
(ii) water samples taken further away from a squid habitat
would have fewer V fischen cells (12). Both of these conditions
were observed in a survey of several sites in Kaneohe Bay (Fig.
1). While relatively high concentrations of V. fischen were
found in water column and sediment samples collected from
animal habitats, the concentrations of other, nonsymbiotic
luminous bacteria did not differ as much between animal
habitats and non-animal habitats (Table 2). The two nonsym-
biotic luminous species are typical heterotrophic bacteria
whose abundances might be simply functions of chemical and
physical environmental conditions (e.g., nutrient concentration
or temperature) that have been shown to affect luminous
bacterial distribution (19, 22, 24).

In summary, the data support the hypothesis previously put
forth (12) that the relatively high abundance of non-visibly
luminous V fischeri in locations inhabited by E. scolopes is due
to a periodic and numerically significant expulsion of symbi-
onts by host animals followed by the proliferation and survival
of these bacteria in the ambient seawater and sediments. Thus,
the abundance and distribution of a common and widespread
species of marine bacteria apparently are, at least in some
locations, largely functions of the presence of their symbiotic
host.
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