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Abstract Inactivation of the sapABCDF genes results in
a loss of virulence in several bacterial pathogens of ani-
mals and plants. The role of this locus in the growth phys-
iology of Vibrio fischeri, and in the symbiotic coloniza-
tion of the squid Euprymna scolopes was investigated. In
rich medium, a V. fischeri sapA insertion mutant grew at
only 85% the rate of its wild-type parent. While a similar
effect has been attributed to a potassium-transport defect
in sap mutants of enteric bacteria, the V. fischeri mutant
grew more slowly regardless of the potassium concentra-
tion of the medium. Similarly, the growth-rate defect was
independent of the source of either carbon, nitrogen, or
phosphorous, indicating that the V. fischeri sap genes do
not encode functions required for the transport of a spe-
cific form of any of these nutrients. Finally, while a delay
in colonizing the nascent light organ of the squid could be
accounted for by the lower growth rate of the mutant, a
small but statistically significant reduction in its final pop-
ulation size in the host, but not in medium, suggests that
the sap genes play another role in the symbiosis. All of
these phenotypic defects could be genetically comple-
mented in trans by the sapABCDF genes, but not by the
sapA gene alone, indicating that the insertion in sapA is
polar to the four downstream genes in the locus. Thus,
while the sap locus is important to the normal growth of
V. fischeri, it plays different physiological roles in growth
and tissue colonization than it does in enteric pathogens.
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Introduction

The marine luminescent bacterium Vibrio fischeri is the
specific light-organ symbiont of the Hawaiian bobtail
squid, Euprymna scolopes. This cooperative association is
initiated each generation when newly hatched juvenile
squids collect an inoculum of their bacterial symbionts
from the surrounding seawater (Nyholm et al. 2000). The
ensuing colonization process can be divided into four
distinct phases: (1) an initial infection phase in which
V. fischeri cells enter the squid light organ and grow to a
maximal colonization level of about 5x105 cells (0-12 h);
(2) the expulsion of about 95% of the bacterial symbionts
from the light organ triggered by a light stimulus at sun-
rise (~12 h); (3) re-growth of the remaining V. fischeri
cells to their maximal colonization level (12—18 h) and,
(4) persistence in a stationary phase (18-36 h) (Ruby and
Asato 1993; Boettcher et al. 1996). The last three phases
repeat on a daily basis throughout the life of the host, cre-
ating a complex and dynamic cycle of bacterial growth in
the symbiosis.

Each of the symbiotic partners can be easily main-
tained in the laboratory, and molecular techniques that al-
low the genetic manipulation of V. fischeri have been de-
veloped. These characteristics, mono-specificity, horizon-
tal transfer of the bacterial partner, and availability of ge-
netic tools, make this symbiosis an ideal model system to
study cooperative microbe-host interactions on a molecu-
lar level (Ruby 1996, 1999). Using this system, several
bacterial genes have been identified that are required for
V. fischeri to: (1) initiate the symbiosis (Graf et al. 1994,
Visick and Skoufos 2001; Millikan and Ruby 2002); (2)
attain a normal level of colonization (Graf and Ruby 1998;
Aeckersberg, et al. 2001); (3) establish a persistent colo-
nization (Graf and Ruby 2000; Visick et al. 2000); and (4)
compete effectively with the wild-type parent strain (Visick
and Ruby 1998).

The sapABCDF (sap=sensitive to antimicrobial pep-
tides) genes were originally discovered in the intracellular
pathogen Salmonella typhimurium. A transposon mutant
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library of S. typhimurium was screened with the antimi-
crobial peptide protamine, and mutants with insertions in
either the sapC or sapD gene were found to have an en-
hanced susceptibility to protamine and to be less virulent
(Groisman et al. 1992). It was later shown that a strain
with a mutation in a sapA homologue of the plant pathogen
Erwinia chrysanthemi showed a similar phenotype: its
susceptibility to plant-derived antimicrobial peptides was
increased, and its virulence was greatly reduced (Lopez-
Solanilla et al. 1998, 2001). Recently, a transposon muta-
genesis approach was used to identify four Proteus
mirabilis mutants with an enhanced susceptibility to the
antimicrobial peptide polymyxin B; one of these mutants
carried the transposon in a gene homologous to sapD of
S. typhimurium and Erwinia chrysanthemi (McCoy et al.
2001).

Other physiological defects have been ascribed to sap
mutants of enteric bacterial species. A mutation in the
Escherichia coli trkE (sapDF) locus conferred both re-
duced rate of potassium uptake and a reduced growth
rate under potassium-limiting conditions. However, these
changes in growth and potassium-transport kinetics were
different from the ones produced by mutations in other 7k
genes (Bossemeyer et al. 1989; Dosch et al. 1991). A sub-
sequent study of an E. coli AtrkE mutant concluded that
resistance to protamine is actually dependent on the abil-
ity of the cell to take up potassium, rather than on having
a functional SapABCDF system (Stumpe and Bakker
1997). In contrast, while Vibrio alginolyticus also possesses
a Trk potassium uptake system, the transport of potassium
by this bacterium is apparently independent of sapDF
(Nakamura et al. 1998; Harms et al. 2002).

Table 1 Strains and plasmids used in this study

As part of an unrelated study, a 500-bp fragment of V.
fischeri ATCC 7744 genomic DNA was found to contain
two partial ORFs with sequence similarity to the sapD
and sapF genes of various species (Chen et al. 2000).
The goal of this study was to investigate the function of
the sapABCDF locus in the V. fischeri-E. scolopes sym-
biosis by: (1) locating, cloning and sequencing the genes,
(2) constructing a sapABCDF null mutant, and (3) deter-
mining its phenotype in culture and in the host.

Materials and methods
Bacterial strains and growth conditions

Strains and plasmids used in this study are listed in Table 1. The
symbiotic V. fischeri strain ES114 and its derivatives were grown
at 28°C either in a seawater-based nutrient (SWT) medium
(Boettcher and Ruby 1990) or Luria-Bertani Salt (LBS) medium
(Graf et al. 1994). Escherichia coli strains were grown at 37 °C in
Luria-Bertani medium (LB) (Sambrook et al. 1989). Media were
solidified with 1.5% (w/v) agar as needed. Antibiotics were added
to the media at the following levels, when appropriate: chloram-
phenicol (Cam, 2 pg/ml for V. fischeri, 20 pg/ml for E. coli),
kanamycin (Kan, 100 pg/ml for both V. fischeri and E. coli). For
certain growth studies, a defined, artificial seawater-based minimal
medium (MM) was used that contained 300 mM NaCl, 50 mM
MgSO,, 10 mM CaCl,, 10 mM KCl, 0.01 mM FeSO,, 50 mM
Tris-HCI, pH 7.4, with either 0.33 mM K,HPO, or 0.33 mM glyc-
erol 2-phosphate as a phosphate source. The carbon and nitrogen
sources were either 20 mM ribose and 0.3% casamino acids,
20 mM ribose and 10 mM NH,CI, or 20 mM N-acetyl-p-glu-
cosamine. Medium reagents were purchased from Difco (Sparks,
Md.) and Sigma (St. Louis, Mo.).

Strains and Characteristics

plasmids

Reference
or source

Escherichia coli strains
DH5a Cloning strain
CC118\pir Host strain for plasmid pEVS104

Vibrio fischeri strains

(Stabb et al. 2001)
(Visick and Ruby 1997)

ES114 V. fischeri wild-type isolate from E. scolopes light organ (Boettcher and Ruby 1990)
CL10 V. fischeri sapA mutant; sapA gene disrupted by kanR marker This study
CL16 CL10 that has been reverse-complemented (sapA™*) This study
Plasmids

pPEVS79 Allelic exchange vector (Stabb and Ruby 2003)
pEVS104  Conjugal helper plasmid (Stabb and Ruby 2003)
pLS6 V. fischeri cloning vector, carrying a chloramphenicol-resistance marker (camR) (Visick and Ruby 1997)
PCR2.1 PCR-product cloning vector Invitrogen
pUC4 K Origin of the kanamycin-resistance marker (kanR) (Messing and Vieira 1982)
pCL103 PEVS79 with a 5.9-kb Xbal-Spel fragment carrying the V. fischeri ES114 sapABCDF This study

locus, 900 bp of upstream and 700 bp of downstream sequence
pCL105 PEVS79 with a 3.7-kb Xbal-Sacl fragment carrying the V. fischeri ES114 sapA, sapB and  This study

partial sapC genes, and 900 bp of upstream sequence
pCL109 pCL105 with a kanR insertion at the Nsil site in the sapA gene This study
pCL110 pLS6 with a 6.0-kb Bg/lII-Earl fragment from V. fischeri ES114 genomic DNA carrying This study

the sapABCDF locus with 600 bp of upstream and downstream sequence
pCL111 pLS6 with a 2.4-kb BgllI-Hpal fragment from V. fischeri ES114 genomic DNA, carrying  This study

sapA with 600 bp of upstream sequence and a partial sapB sequence




Fig.1A-D The Vibrio fischeri
sapABCDF locus. The V. fi-
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scheri sapABCDF genes were
cloned on plasmid pCL103 (A)

A pcLios [

carrying a 6.9-kb Xbal-Spel
chromosomal fragment. The
sapA mutant was constructed
by homologous recombination
using the plasmid pCL109 (B),
which carries a kanR cassette '

inserted into the Nsil site, dis- B pCL109 i

rupting the sapA gene 900 bp
downstream of the predicted
transcriptional start site. Plas-

mids pCL110 (C) and pCL111
(D), carrying sapABCDF and

C pcL110 I

sapA, respectively, as well as

600 bp of upstream sequence,
were used in complementation
studies

D pcLi11

Genetic techniques

Genomic and plasmid DNA were extracted using Qiagen DNeasy
and Qiaprep Miniprep systems (Qiagen, Valencia, Calif.), respec-
tively. PCR was carried out according to standard protocols (Sam-
brook et al. 1989) using AmpliTaq DNA polymerase (Perkin-
Elmer, Branchburg, N.Y.). For plasmid constructions, restriction
enzymes and DNA ligase were obtained from New England Bio-
Labs (Beverly, Mass.) and used according to the manufacturer’s
protocols. Transfer of plasmids into E. coli host strains was ac-
complished using standard techniques (Sambrook et al. 1989). Tri-
parental conjugation was used to transfer plasmids into V. fischeri
strains (Stabb et al. 2001). A Perkin-Elmer/ABI Prism automated
sequencer was used (University of Hawaii Biotechnology/Molecu-
lar Biology Instrumentation and Training Facility).

Cloning and sequencing of the V. fischeri sapABCDF locus

A 420-bp fragment of V. fischeri ES114 genomic DNA containing
partial gene sequences of sapD and sapF was amplified by PCR
using the primers 5° TTACCCATTGGTTGTCG 3’ and 5" GGA-
TCCTGGAAAATCAT 3’. The primer sequence was based on a
previously published 480-bp sequence of the V. fischeri strain
ATCC 7744 (Chen et al. 2000). The resulting PCR product was
used as a template to create a digoxigenin-labeled Southern hy-
bridization probe (PCR DIG labeling kit, Boehringer Mannheim).
Genomic DNA obtained from V. fischeri ES114 was digested with
different restriction enzymes, separated on a 1% agarose gel, trans-
ferred to a nylon membrane (Hybond-N+, Amersham Pharmacia
Biotech, Piscataway, N.J.) and hybridized with the probe, which
was detected using CDP-Star Chemi-Luminescence substrate
(Boehringer Mannheim). A 6.9-kb fragment containing the target
sequence was identified and isolated from a Xbal-Spel restriction
digest of genomic DNA, and cloned into the mobilizable vector
PEVS79. The clone containing pCL103 (Fig.1 A) was identified
by dot-blot hybridization, and both strands of the insert were se-
quenced by primer-walking. Sequence analysis was carried out us-
ing the software programs Vector NTI Suite 5.5 (InforMax, North
Betheseda, MD) and BLAST (http://www.ncbi.nlm.nih.gov/
BLAST/). Sequences other than those from V. fischeri were ob-
tained from GenBank (S. typhimurium, E. chrysanthemi, E. coli)
and TIGR (Vibrio cholerae).

Construction of a sapA mutant and complementing strains

A 3.4-kb fragment of pCL103 was subcloned by digestion with
Sacl and religation, producing pCL105 (Table 1). A kanamycin-re-

sistance marker was isolated from pUC4K by restriction digest
with Pstl, and ligated into the Nsil site of pCL105. The resulting
plasmid pCL109 (Fig. 1B) was transferred into V. fischeri ES114
by triparental mating, and single- and double-recombinants were
selected as previously described (Stabb et al. 2001), generating the
V. fischeri sapA mutant strain CL10.

The sapA mutant was complemented in trans with either the
complete sapABCDF locus or with the sapA gene only. A 6.0-kb
Bglll-Earl fragment carrying the sapABCDF locus and a 2.4-kb
Bglll-Hpal fragment carrying only the sapA gene were each iso-
lated from pCL103, gel-purified, and ligated into the vector pLS6
(Table 1). The resulting plasmids, pCL110 and pCL111 (Fig.1C,
D), as well as the vector control pLS6, were transferred into both
wild-type V. fischeri and the sapA mutant CL10 (Table 1). Because
the addition of antibiotics to maintain the complementing plasmids
was not practical in some experiments, the sapA mutant was also
reverse-complemented by recombining the plasmid pCL105,
which carries the wild-type sapA gene, into the genome of the
sapA mutant strain CL10 by triparental mating. The resulting
strain CL16, a double-recombinant that had become restored with
a functional sapA, was identified by its kanamycin sensitivity; the
loss of the kanR marker was further confirmed by PCR analysis of
the sapA gene locus.

Growth characteristics

To determine the growth characteristics of V. fischeri wild-type,
the sapA mutant, and the complemented sapA mutant strains in
media of different compositions, 10 ml of each medium were in-
oculated to an optical density (OD) at 600 nm of about 0.05 with
cells that had been pre-grown in this medium. Cultures were kept
shaking at 28°C, samples were taken during the exponential
growth phase at different times, and the ODs were measured and
plotted against time. Regression analyses of the resulting growth
curves were carried out using MiniTab 10 Xtra (MiniTab Inc, State
College, Penn.), and generation times were calculated from the
slope of the exponential regression line during exponential growth.
To determine the growth yield, the cultures were incubated for a
total of 24 h and the final OD was measured.

Colonization assays

Four assays were used to determine the colonization phenotype of
wild-type V. fischeri, the sapA mutant, and their derivatives.
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Bioluminescence assay

The course of the early colonization events was monitored as pre-
viously described (Ruby and Asato 1993). Briefly, newly hatched
squids were placed into vials with 4 ml of filter-sterilized seawater
containing an inoculum of approximately 4,000 colony forming
units (CFU) of either wild-type V. fischeri, the sapA mutant, or the
reverse-complemented sapA mutant. Thirty-six individual animals
were infected per treatment group; 12 animals served as an uninoc-
ulated control and were placed into filter-sterilized seawater with-
out added bacteria. Bioluminescence of the animals, an indirect
measure of the degree of colonization of the squids, was monitored
periodically over 24 h using an automated photometer.

Level of colonization in the squid light organ

The number of CFU per squid was determined at 12, 20, and 48 h
post-inoculation as previously described (Ruby 1996). Briefly,
newly hatched squids were placed into 50 ml of filter-sterilized
seawater containing about 50,000 CFU of either wild-type V. fi-
scheri, the sapA mutant, or the reverse-complemented sapA mutant,
and incubated for 12 h. Some animals were placed in filter-steril-
ized seawater without added bacteria. At each of the time points,
15 animals per treatment group and two uninoculated animals were
homogenized, and the homogenate was diluted and spread onto
SWT agar. The V. fischeri colonies arising after an overnight incu-
bation were counted, and the number of CFU per squid calculated.

Minimum infectious dose

Individual, newly hatched squids were placed into 4 ml of filter-
sterilized seawater containing 50, 100, 200 or 400 CFU of either
wild-type V. fischeri or the sapA mutant. After an incubation pe-
riod of 3 h, the squids were transferred to fresh vials with 4 ml of
filter-sterilized seawater containing no added bacteria. Successful
colonization was indicated by the presence of animal luminescence
at 48 h as detected with a TD-20/20 luminometer (Turner Design,
Sunnyvale, Calif.).

Competitive phenotype

The presence of a competitive colonization advantage of either
wild-type V. fischeri or the sapA mutant strain was determined as
previously described (Visick and Ruby 1998) with the following
modifications. Briefly, about 15 newly hatched squid were placed
into 50 ml of filter-sterilized seawater, containing approximately
50,000 CFU of each of the competing strains, and incubated for
12 h. A sample of the inoculated seawater was spread onto LBS
agar to determine the exact ratio of the two strains in the inoculum.
At 24 h post-inoculation, squid were homogenized and a dilution
of the homogenate spread onto LBS agar. About 100 CFU from
both the inoculum and the homogenates were patched onto antibi-
otic-containing and antibiotic-free LBS agar to determine the ratio
of wild-type V. fischeri (kanamycin-sensitive) to sapA mutant
(kanamycin-resistant).

Stress response assays

Four assays were used to determine the effects of a sapA mutation
on the resistance of the bacterium to agents of cellular stress.

Antimicrobial peptides

The minimal inhibitory concentration (MIC) for each of eight
cationic antimicrobial peptides, CP11CN, CP26, CP28, CP29,
LL37, P-CN, polymyxin sulfate, and protamine sulfate (Friedrich
et al. 1999, 2000; Jia et al. 2000; Travis et al. 2000), was deter-
mined using a modified microtiter broth-dilution method (Jia et al.

2000). Briefly, a solution of each peptide was diluted by serial
two-fold dilutions in distilled water containing 0.01% acetic acid
and 0.2% bovine serum albumin. Bacterial cultures in mid-expo-
nential growth phase were diluted to a concentration of about
1x10° cells per ml of LBS, and 200 pl of the culture were placed
into 96-well microtiter dishes, to which 22 ul of the peptide dilu-
tions were added. The dish was incubated with shaking at 22 °C for
16-20 h, during which time the OD of each of the cultures was pe-
riodically measured using a Perkin-Elmer HTS 7000 BioAssay
plate reader. The MIC was defined as the concentration of the pep-
tide that resulted in a 50% decrease in maximal growth rate. In
each of the assays, the V. fischeri strain ompU (Aeckersberg et al.
2001) was used as a positive control.

Detergent exposure

The MIC of SDS and dioxycholate were determined by the modi-
fied microtiter-broth dilution method as described above for the
antimicrobial peptide resistance assay.

Heat shock

Mid-exponential phase SWT cultures of wild-type V. fischeri or the
sapA mutant were diluted to a concentration of about 5,000 cells
per ml in fresh medium, and aliquots of these cultures were placed
in a 42 °C water bath. After different exposure times (no exposure,
10 s, 30 s, 1 min, 2 min, 5 min, 10 min and 20 min), 50 pl of the
cultures were spread on SWT agar. After an overnight incubation
at 28 °C, CFU were determined, normalized to the unexposed con-
trol, and plotted against the exposure time to estimate the time re-
quired to kill 50% of the cells.

Osmotic shock

Mid-exponential phase SWT cultures of wild-type V. fischeri or
the sapA mutant were diluted to a concentration of about 2.5x
107 cells per ml of SWT medium. A 10-ul aliquot of the diluted
culture was transferred into 490 ul of sterile distilled water con-
taining (per ml) 0, 2.5, 5, 10, 15, 20, 25, 35, 50, 75 or 100 mg of
NaCl. After a 10-min incubation, 10 pl were diluted into 990 ul of
sterile seawater, and 50 L of the dilution spread onto SWT agar.
CFU were determined after an overnight incubation at 28 °C and
normalized to the unexposed positive control to estimate the NaCl
concentration required to kill 50% of the cells.

Sequence accession number

The sequence of the sapABCDF locus has been submitted to Gen-
Bank under the accession number: AF454370.

Results

The sapABCDF locus in V. fischeri is homologous
to sap loci in other species

To characterize the V. fischeri ES114 sapABCDF locus,
a 6.9-kb Xbal-Spel genomic DNA fragment containing
the sap genes, as well as several hundred base pairs of
flanking sequence, was cloned and sequenced (Fig. 1A).
The locus has the same gene arrangement as the homolo-
gous sapABCDF loci of V. cholerae, S. typhimurium,
E. chrysanthemi and E. coli. The predicted V. fischeri Sap
proteins are most closely related to those of V. cholerae.
The SapD and SapF proteins, homologs of the cytoplas-



mic ATPases of the ABC transporter family, exhibit the
highest similarity among all the species. Conserved ATP-
binding motifs (Walker et al. 1982), which are the charac-
teristic functional domains of ATPases, were identified at
amino acids 40-55 and 169-184 in SapD, and at amino
acids 47-62 and 161-176 of SapF in V. fischeri.

The sapABCDF genes have been shown to be tran-
scribed as a single transcript in S. typhimurium (Parra-
Lopez et al. 1993), and sequence analyses suggested that
the same polycistronic operon structure is present in V. fi-
scheri. Specifically, a strong transcriptional terminator was
found downstream of the V. fischeri sapF gene, while
none was detected within the sapABCDF locus. In addi-
tion, the locus contains overlapping start- and stop-
codons; i.e., there are no intergenic regions.

The growth rate of the V. fischeri sapA insertion mutant
is reduced

Because of its apparent operon structure, the strategy cho-
sen to create a sapABCDF null mutant strain was to insert
a kanamycin-resistance (kanR) marker into the sapA gene.
A clone was obtained that carried a 3.7-kb Xbal-Sacl
fragment comprising 0.9 kb of upstream sequence, as well
as complete sapA and sapB, and partial sapC sequences.
The kanR marker was inserted 900 bp downstream of the
putative transcriptional start site of the sapA gene in this
clone, producing pCL109 (Fig. 1B). The V. fischeri sapA
mutant strain CL10 was obtained by homologous recom-
bination of pCL109 into the chromosome of strain ES114
(Table 1). Insertion of the kanR marker into the expected
location of the genome was confirmed by Southern-blot
analysis. Its orientation was opposite that of the sapA
gene as determined by sequencing the flanking region of
the insert using primers from sites within the kanR gene
(data not shown). Control experiments performed in an-
other study have shown that carriage of this kanR gene
has no detectable effect on the growth of V. fischeri cells
either in culture or in the symbiosis (Stabb and Ruby, per-
sonal communication).

After an overnight incubation at 28 °C on nutrient agar,
the V. fischeri sapA mutant produced colonies that were
visibly smaller than the wild-type strain. To further inves-
tigate this observation, we determined the generation times
of both V. fischeri wild type and the sapA mutant carrying
in trans: (1) no complementing plasmids, (2) pLS6, the
vector control, (3) pCL111, the vector containing sapA, or
(4) pCL110, the vector containing sapABCDF (Table 1;
Fig. 1C, D). None of the strains displayed a lag phase, but
the V. fischeri sapA mutant grew significantly more
slowly than the wild-type strain, except when it was com-
plemented by the entire sapABCDF locus (Fig.2A,B).
Thus, the sapA mutation appears to have a polar effect on
the expression of one or more of the downstream sap
genes. Interestingly, the final growth yields of all of the
strains were the same, indicating that in culture medium
the sap mutation does not limit the extent of growth (Fig.
2A, and data not shown).
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Fig.2A,B Relative growth rates of V. fischeri wild type, sapA
mutant and complemented sapA mutant strains. A Growth curves
of V. fischeri wild-type strain ES114 (closed circles) and the sapA
mutant CL10 (open triangles) grown in SWT medium. Maximum
growth rates were determined on the early exponential portion of
the curves (usually the first 2 h). B The V. fischeri wild-type (black
bars), and the sapA mutant (hatched bars) were grown either: (1)
carrying the vector plasmid (control), (2) carrying the vector con-
taining sapA, or (3) carrying the vector containing sapABCDF.
The generation times were determined in LBS medium containing
2 pg of chloramphenicol per ml. Presented are the results of a sin-
gle experiment, normalized to wild-type levels, but each experi-
ment was repeated at least once with the same outcome. Error bars
Standard error of the slope of the growth-rate regression line ob-
tained from each culture

These complementation data provide evidence that the
observed reduction of growth rate is due to the interrup-
tion of sapA and not to a secondary effect, such as the ex-
pression of a truncated SapA protein, a secondary muta-
tion elsewhere in the genome, or a downstream effect on
genes outside the putative sapABCDF operon. The obser-
vation that complementation with sapA alone did not re-
store the wild-type phenotype also supports the hypothe-
sis that the sapABCDF genes are co-transcribed.

The V. fischeri sapA mutant is less effective
in colonizing the host squid

The initial events in the colonization process of E. scolopes
by either V. fischeri wild type, the sapA mutant, or the re-
verse-complemented sapA mutant were monitored for the
first 24 h post-inoculation (Fig.3). The time that light
emission is first detectable, which is a function of both
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Fig.3 Development of bioluminescence in squids during colo-
nization by V. fischeri strains. Newly hatched juveniles of E. sco-
lopes were incubated with either V. fischeri wild-type strain ES114
(circles), the sapA mutant CL10 (diamonds), or the reverse-
complemented sapA mutant CL16 (triangles). Animal biolumines-
cence was detected as a measure of the degree of colonization.
Each data point represents the average bioluminescence level of
36 animals, with the indicated standard errors of the mean. The lu-
minescence of uninoculated animals was equal to the background
level (data not shown). The same results were obtained when the
experiment was repeated

bacterial population size and autoinducer concentration
(Boettcher and Ruby 1990), was delayed by about 2 h in
animals colonized by the sapA mutant, and the level of
light produced was generally lower thereafter. The colo-
nization phenotype of the sapA mutant could be comple-
mented by reverse complementation, demonstrating that
the observed phenotype is a result of the mutation on the
sap locus and not due to any secondary effect. Because lu-
minescence is only an indirect measure of the degree of
colonization, the number of V. fischeri CFU per light or-
gan was also determined at 12, 20 and 48 h post-inocula-
tion (Table 2). These data confirmed that the number of
symbionts is significantly lower at 12 h and 24 h in ani-
mals colonized by the sapA mutant, and that this de-
creased level of colonization by the sapA mutant contin-
ues for at least 48 h post-inoculation.

A possible explanation for the delay in colonization
was that the sapA mutant requires a higher level of inocu-
lum than the wild-type strain. However, for both the wild-
type and the sapA mutant strains the minimal inoculum
that resulted in colonization of 50% of the animals under
the standard assay conditions was about 100 CFU per an-
imal (data not shown).

Table 2 Colonization effectiveness of Vibrio fischeri strains. The
number of CFU per squid of V. fischeri wild-type, the sapA mu-
tant, and the reverse-complemented sapA mutant was determined
at 12, 20 and 48 h post-inoculation. The values represent the mean

The competitive phenotype of the sapA mutant was ex-
amined to determine whether there was evidence that a
factor other than its growth defect might contribute to the
observed colonization phenotype. Newly hatched squids
were incubated with a mixed inoculum consisting of an
equal proportion of wild-type V. fischeri and sapA mutant
cells, and the ratio of the two strains was determined in
the resulting light organ population 24 h post-inoculation
(Fig.4). The sapA mutant was significantly reduced in its
ability to compete with the wild-type strain during colo-
nization: the ratio of V. fischeri sapA mutant to wild-type
decreased by a factor of >15 in the light organ as soon as
24 h post-inoculation. In contrast, genetic complementa-
tion with the sapABCDF genes in trans allowed the sapA
mutant to compete well with the wild-type strain, essen-
tially maintaining its inoculation ratio during growth in
the light organ.

The growth defect of the sapA mutant is not related
to either the concentration of potassium or the source
of carbon, nitrogen, or phosphorus in the medium

It has been reported that a mutation in the sapDF (trkE)
genes confers a potassium-dependent growth defect on
E. coli cells (Dosch et al. 1991). Therefore, we compared
the growth rates of the V. fischeri sapA mutant and the
wild-type strain in minimal medium containing 0.1, 1, 10
or 100 mM potassium chloride. Neither strain grew in me-
dium with a potassium ion concentration of 0.1 mM or
less. However, the relative growth rates of the mutant and
the wild-type were the same at the other three potassium
concentrations (data not shown), indicating that the growth
defect of the sapA mutant is unlikely to be due to potas-
sium starvation.

In an attempt to identify a possible substrate for the
putative Sap transporter, the growth rates of wild-type
V. fischeri and the sapA mutant were compared in defined
minimal media containing different compounds as sole
carbon, nitrogen, or phosphorous sources. We reasoned
that if the sap locus encodes a permease system for a spe-
cific form of one of these nutrients, then the sapA mutant
might have a relative growth defect in medium that con-
tained this substrate as the sole source of an essential
chemical element; however, there should be no such de-
fect when this substrate was replaced by a chemically dis-
tinct source of the element. Because the carriage of com-

(£standard error of the mean) of 15 animals per treatment, for each
time point after inoculation; no CFU could be detected in light or-
gans of animals that were maintained in uninoculated seawater

CFU per light organ (x10%) at:

Inoculating strain 12 h 20 h 48 h
ES114 (wild-type) 0.21 (£ 0.033) 12.8 (£1.9) 9.1 (¥1.3)
CL10 (sapA mutant) 0.02 (£ 0.003) 2.4 (x0.9) 6.0 (£1.2)
CL16 (reverse-complemented sapA mutant) Not determined 14.9 (£3.2) 13.5 (x1.7)
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Fig.4 Colonization phenotype of the sapA mutant when competed
against the wild-type strain. Juvenile animals were incubated with
an approximately 1:1 ratio of either the sapA mutant CL10 and the
wild-type strain ES114 (open circles) or the sapA mutant and the
wild-type strain, each carrying pCL110 sapABCDF in trans
(closed circles). At 24 h after inoculation, 100 bacterial colonies
from the homogenate of each squid light organ were identified,
and the ratio of mutant to wild-type cells in the population deter-
mined. Each circle represents the competitive index determined
from an individual animal, expressed as the relative proportion of
sapA mutant cells present in the light organ at 24 h post-inocula-
tion. Circles with an arrow indicate animals with a competitive in-
dex below the detection level (<0.01). The experiments were re-
peated twice with the same results
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Fig.5 Generation times of V. fischeri strains grown in media with
different nutrient sources. V. fischeri wild-type strain ES114 (black
bars), the sapA mutant CL10 (hatched bars), and the reverse-com-
plemented sapA mutant CL16 (gray bars) were grown in minimal
media containing: ribose (Rib) or N-acetyl-p-glucosamine (NAGA)
as the carbon source; casamino acids (CAA), ammonia (NH,*) or
NAGA as the nitrogen source; and inorganic phosphate (P;) or
glycerol 2-phosphate (P,,,) as the phosphorous sources. Presented
are the results of a single experiment, normalized to wild-type lev-
els, with error bars indicating the standard error of the slope of the
regression line for the growth curve in each medium type. Each
growth curve was repeated at least once with the same result

plementing plasmids reduces the growth rate substantially
in minimal medium, the reverse-complemented sapA mu-
tant was used as a control in this set of experiments.
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Regardless of the nature of the nutrient source tested,
the sapA mutant grew more slowly than the wild-type
strain (Fig. 5); however, there was no detectable difference
in the final growth yield (data not shown). Reverse com-
plementation could restore the wild-type growth rate in
each case. Each of the classes of elemental nutrients (C, N
or P) could be excluded as being the source of a limiting
substrate for the possible transporter because substitution
with a different chemical form of the element did not re-
lieve the growth-rate defect of the sapA mutant.

The SapABCDF proteins also do not appear to be in-
volved in the transport of iron because the addition of a
high concentration (100 uM) of Fe?* to LBS medium had
no effect on the growth rate of either the V. fischeri sapA
mutant strain or wild type (data not shown).

The V. fischeri sapA mutant withstands cell-membrane
stress agents normally

While light microscopy revealed no differences in cell
morphology between the wild-type and the sapA mutant
strain, it remained possible that the reduced growth rate of
the mutant was caused by a general membrane distur-
bance resulting from the absence of the putative cytoplas-
mic membrane proteins SapB and SapC. To explore this
possibility, we investigated the responses of V. fischeri
wild-type and the sapA mutant to four different stress con-
ditions that target membrane integrity: cationic peptides,
detergents, heat, and osmolarity.

The presence of functional sap genes has been impli-
cated in the ability of enteric bacteria to withstand cationic
antimicrobial peptides (Parra-Lopez et al. 1993; Lopez-
Solanilla et al. 1998). Thus, for wild-type V. fischeri and
the sapA mutant strain, the MICs of a variety of cationic
antimicrobial peptides with diverse amino acid sequences
and structures were determined. Although there were dif-
ferences between the actual values of the MICs for wild-
type V. fischeri and for Vibrio anguillarum or S. typhi-
murium (Jia et al. 2000), the relative levels of sensitivities
to the eight peptides were generally the same under our
assay conditions (data not shown). Most significantly, for
each of the tested peptides, the MICs were identical for
the sapA mutant and wild-type V. fischeri, suggesting that
a functional SapABCDF system in V. fischeri does not
confer an increased resistance to antimicrobial peptides.
The V. fischeri strain ompU, which was used as a control
in these experiments, displayed an enhanced susceptibility
to each of these peptides. Similarly, under each of the
other three stress conditions tested, there was no sig-
nificant difference between the responses of wild-type
V. fischeri and the sapA mutant during growth or in sur-
vival of stationary phase (data not shown).

Discussion

The sapABCDF genes in the pathogenic bacterial species
S. typhimurium and E. chrysanthemi have been reported
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to contribute to the ability of these bacteria to colonize
their hosts (Parra-Lopez et al. 1993; Lopez-Solanilla et al.
1998). A recently published 500-bp genomic sequence
from the V. fischeri strain ATCC 7744 that had a high
level of identity to the 3’end of the sapD gene and the
5’end of the sapF gene (Chen et al. 2000) indicated that
these genes might be present in this species as well. If
they were, we reasoned that it would be of interest to
know whether the V. fischeri sap locus encodes functions
that might be important in the symbiotic colonization of
the light organ of the Hawaiian bobtail squid, E. scolopes.

We identified and cloned the sapABCDF locus of
V. fischeri strain ES114, and its sequence revealed high
similarity to these genes in other bacteria. A V. fischeri
sapA mutant was constructed and its growth and symbi-
otic colonization phenotypes were compared with those
of the wild-type strain. As has been reported for a
E. chrysanthemi sapA deletion mutant (Lopez-Solanilla et
al. 1998), and S. typhimurium sapC and sapD transposon
mutants (Groisman et al. 1992), the V. fischeri sapA mu-
tant is less effective at colonizing its host. During its col-
onization of the light organ, V. fischeri attains a sufficient
population density to induce bioluminescence, which in-
creases to a maximum level at about 12 h post-inoculation
(Ruby and Asato 1993). The times at which luminescence
is first detected and at which it reaches a maximum are
both delayed in squids that are colonized by the sapA mu-
tant. However, because the V. fischeri sapA mutant also
displays a growth-rate defect in culture (Fig. 1), explana-
tion of any defect in colonization rate does not require a
specific role of the sap operon in symbiosis.

At each of three times during the first 48 h of colo-
nization, there were fewer bacteria in animals colonized
by the sapA mutant than by the wild-type (Table 2). This
result indicates that not only the rate but also the extent of
colonization by the sapA mutant is significantly impaired.
Because the growth yield of the sapA mutant is unaffected
in culture medium, there is no simple explanation for its
failure to reach a normal level of colonization in the host,
suggesting that the yield defect may be specific to the
conditions of the symbiosis. This phenotype is similar to
that reported for certain auxotrophic mutants of V. fischeri
(Graf and Ruby 1998) and indicates that the sap locus
may play an analogous, but as yet unknown, function when
the symbionts are colonizing the host light organ.

Little is known about the physiological effects caused
by sap gene mutations in other bacteria. Because an
E. coli sapD mutant (also called AtrkE) grows more slowly
under potassium-limiting conditions, a link between the
sap genes and potassium transport has been proposed
(Bossemeyer et al. 1989; Dosch et al. 1991; Harms et al.
2002). However, we detected no difference between the
growth rates of the V. fischeri wild-type and the sapA mu-
tant in media containing either low or high potassium con-
centrations. Thus, if the V. fischeri sapA mutation does
disrupt the expression of the rest of the locus, then it ap-
pears that the sapD gene of this bacterium does not con-
tribute to potassium transport in the same way as its ho-
mologue does in E. coli. It has been proposed that, unlike

E. coli, the V. alginolyticus Trk potassium-uptake system
utilizes ATPase subunits from transporters other than the
SapABCDF proteins (Nakamura et al. 1998; Harms et al.
2002). Thus, it is possible that in Vibrio species the Trk
system is independent of sapD, which would explain the
potassium-insensitive growth-rate defect of the V. fischeri
sapA mutant. If, as proposed for E. coli (Stumpe and
Bakker 1997), a sufficiency of potassium transport is inte-
gral to antimicrobial peptide resistance, then the V. fi-
scheri sapABCDF genes may not contribute to antimicro-
bial peptide resistance because they are not required for
potassium transport.

To better understand the physiological function of the
V. fischeri SapABCDF proteins, the observed growth de-
fect was investigated in more detail. Because of the
growth-rate defect of the V. fischeri sapA mutant in tryp-
tone-containing medium, as well as the sequence similar-
ity of SapA to peptide transporters like DppA and OppA
(Detmers et al. 2001), it seemed reasonable that the
SapABCDF proteins might play a role in the nutritional
uptake of peptides. However, the growth defect of the
sapA mutant was also expressed in defined minimal me-
dia containing structurally distinct sources of carbon, ni-
trogen, and phosphorous (Fig.5). Thus, it is unlikely that
the SapABCDF proteins are required for the specific up-
take of an external nutrient.

Similarly, under our assay conditions the responses of
the sapA mutant to several stress conditions (i.e., cationic
peptides, detergents, heat, and osmolarity) were indistin-
guishable from those of the wild-type strain, suggesting
that the absence of the SapABCDF proteins does not cre-
ate a general membrane defect in culture. Preliminary
studies suggest that E. scolopes tissues produce antimi-
crobial peptides (W. Crookes and M. McFall-Ngai, Ke-
walo Marine Laboratory, University of Hawaii, personal
communication). While the sapA mutant is not more sen-
sitive to the cationic peptides tested in this study, it re-
mains possible that the V. fischeri sapA mutant will prove
to be more sensitive to such host peptides.
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	Figure 3 | Simplified life cycles of five symbioses. In each of the symbioses shown, the animal obtains a specific symbiont (or symbionts), which colonizes the host in a particular location. a | The squid obtains its symbionts from sea-water populations, which colonize the nascent light organ. b | The nematode brings its symbiont into the insect host, where both proliferate. The bacteria then recolonize the nematodes, which escape from the carcass. c | Juvenile leeches obtain symbionts after hatching from their cocoon (perhaps from the cocoon itself). They then take up residence in the crop, where they digest the blood meal. d | The tsetse fly can either pass the symbionts maternally to the eggs or pick up new strains from the environment. Specific symbionts on the food of the fruit fly colonize and persist in the enteric tract.
	Figure 4 | Categories of colonization mutants. Microbial symbionts that are passed horizontally must negotiate several stages of the colonization process. Studies of genetically engineered mutant strains have revealed defects that can be placed in one of several classes. In this example, inoculation with a wild-type strain from the environment allows a few symbionts to colonize, which grow to a specific population size that is then stably maintained over time. Three broad classes of defects have been discovered in several symbiotic systems: initiation mutants, which are unable to inoculate the host; accommodation mutants, which fail to reach the usual population size; and persistence mutants, which at first colonize normally, but are unable to maintain themselves.
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