D-Fining DarR, a LysR-Type Transcriptional Regulator That Responds to D-Aspartate

Mark J. Mandel

ABSTRACT Work by Jones et al. (R. M. Jones, Jr., D. L. Popham, A. L. Schmidt, E. L. Neidle, and E. V. Stabb, J Bacteriol 200:e00773-17, 2018, https://doi.org/10.1128/JB.00773-17) describes a D-aspartate-sensing system in proteobacteria. D-Amino acids are critical components of peptidoglycan and other structures. The new study identifies the LysR-type transcriptional regulator DarR, which activates the aspartate racemase RacD. The overexpression of RacD enables it to synthesize D-glutamate and restore normal peptidoglycan in a Vibrio fischeri murI mutant. This study contributes to the understanding of emerging roles for D-amino acids and how they are synthesized under distinct conditions.

KEYWORDS D-amino acids, aspartate, LysR-type transcription factor, peptidoglycan, Vibrio fischeri, Aliivibrio fischeri

Ribosomes across all domains of life synthesize proteins containing L-amino acids; yet, there is increasing appreciation for significant biological roles for D-amino acids (1). D-Amino acids are synthesized by racemization of the L-form to the D-form, though there are additional enzymes (e.g., D-amino acid transferases) that form D-amino acids from α-keto acids (2). D-Amino acids can be incorporated into proteins by nonribosomal peptide synthetases, or by posttranslational modification of residues in ribosome-synthesized proteins by racemization from the L- to the D-isomer (1, 3). A major function for D-amino acids is as constituents of the peptide stem of peptidoglycan, which contains D-alanine and D-glutamate (4, 5). The recent use of fluorescently labeled analogs of these compounds has enabled the visualization of peptidoglycan synthesis in a wide range of bacteria (6, 7).

Despite our limited knowledge of the mechanisms by which D-amino acids influence biological processes, there has been increasing awareness that they play important functions. L-Alanine stimulates Bacillus subtilis spore germination, yet D-alanine strongly inhibits the process, with the L-isomer likely serving as a signal for nutrient availability (8). Additionally, D-serine is highly abundant in human urine. Uropathogenic Escherichia coli strains are enriched for the presence of a D-serine deaminase, yet its role during host colonization is unclear (9, 10). Additionally, there may be effects of D-amino acids on biofilm formation, although there has not been clear replication of these effects (11–14).

A new study from the laboratory of Eric Stabb and collaborators presents the discovery of DarR, a D-aspartate-responsive transcription factor in Vibrio fischeri that is likely to exhibit a conserved function across much of the Proteobacteria. A model summarizing the key results from the study is shown in Fig. 1. This work was presented by R. Mark Jones at the ASM Conference on Vibrio in November 2017, in Chicago, IL, and is published in this issue (15).

The group previously undertook a clever genetic screen to identify mutants that failed to grow on standard media but could grow upon supplementation with other compounds. Lyell et al. (16) identified 22 independent transposon insertions that mapped to 13 genes.
In each case, the mutant could not grow on buffered rich medium but grew upon supplementation with 17 diverse compounds, including hemin, N-acetylg glucosamine, D-glutamate, D-alanine, MgSO4, and other biologically relevant compounds. Three of these mutants contained transposon insertions in murI, which encodes a racemase required to generate D-glutamate from L-glutamate for peptidoglycan synthesis. Supplementation with D-glutamate alone enabled growth of the murI mutants.

In their current work, Jones et al. (15) then conducted suppressor analysis, identifying spontaneous suppressors of the murI transposon insertions that were no longer D-glutamate auxotrophs. Three isolated suppressors all exhibited the same amino acid replacement (M202I) in a LysR-type transcriptional regulator (LTTR), which they named DarR (D-aspartate-responsive regulator). DarR(M202I) exhibited suppression of the D-glutamate auxotrophy when expressed in trans, supporting a functional and dominant role for the darR mutation in enabling growth on unsupplemented rich medium.

LTTRs are DNA-binding transcription factors and are typically transcribed divergently from the genes they activate (17). The chromosomal organization of DarR suggested putative target genes, as follows: the divergent two-gene operon included an aspartate racemase that they named RacD (racemase for aspartate, amino acid symbol D). The authors proceeded to demonstrate that RacD (removal or overexpression) is epistatic to the suppressing DarR allele. This set of results supports a hypothesis that the DarR point mutation leads to the upregulation of RacD, and that RacD activity is responsible for the suppression.

How does RacD overexpression suppress a D-glutamate auxotrophy? Given its annotation as an aspartate racemase, the authors posit that at high RacD levels, the
racemase is promiscuous and can generate L-glutamate from D-glutamate. This is supported by biochemical analysis of the peptidoglycan; the suppressor’s peptidoglycan is indistinguishable from that of the wild type, arguing against the replacement of D-glutamate with another amino acid.

The authors proceed to ask how the DarR-RacD system is regulated. D-Aspartate induces racD in a DarR-dependent manner, and DarR autorepresses independent of D-aspartate. There are two putative LTTR binding sites upstream of the racD operon and a mutation of one abolished induction by D-aspartate. Furthermore, the system is required for full utilization of D-aspartate as a nutrient source. DarR homologs were identified across numerous proteobacterial species, and functional studies in another organism (Acinetobacter baylyi) support a conserved function. In many of the taxa, DarR is transcribed opposite genes connected to racemase activity or aspartate metabolism. A likely interpretation of this observation is that DarR is responsive to D-aspartate in diverse organisms, and there has been evolutionary flexibility in the target gene transcribed opposite the regulator. Whether there are additional DarR targets in V. fischeri or other organisms remains to be elucidated.

The study provides strong support for the use of the model organism V. fischeri to dissect novel biological processes. V. fischeri peptidoglycan has been studied extensively, as it is involved in the specific mutualism with the Hawaiian bobtail squid host, Euprymna scolopes. Peptidoglycan generally is required for stimulating ciliated host appendages that recruit the symbiont to produce mucus, which functions to entrap bacteria from seawater (18). Furthermore, the specific peptidoglycan fragment tracheal cytotoxin signals successful colonization to the host, stimulating host development, including apoptosis and regression of the appendages (19). There are other intriguing responses of the squid host to peptidoglycan (20–22). In previous work, the Stabb laboratory has elucidated peptidoglycan remodeling and recycling pathways that can influence such interactions with the host (23).

Enzymes involved in the construction and degradation of peptidoglycan remain appealing targets for antibiotic development, and MurI inhibitors in particular have been identified (24, 25). Applying a similar approach to identify suppressors of murl in Mycobacterium smegmatis, mutations were identified that activated a D-amino acid transaminase (26). Therefore, these two studies describe distinct mechanisms by which resistance can arise in response to deletion of an essential peptidoglycan biosynthetic enzyme that is a target for antibacterial compounds.

This discovery adds DarR to E. coli DsdC and Pseudomonas aeruginosa DguR as transcription factors that are activated by D-amino acids (D-serine and D-glutamate, respectively). With D-amino acids observed in marine environments, it seems likely that the DarR-RacD system may be useful for the utilization of nutrient sources that V. fischeri encounters (27, 28). Furthermore, in the earlier paper (16), Lyell et al. identified other mutants that could grow on rich medium only with supplementation by peptidoglycan precursors, suggesting that the approach presented here may prove useful for further characterization of D-amino acid regulatory mechanisms in bacteria.

ACKNOWLEDGMENTS

I thank Rod Welch for helpful comments.

The work in the Mandel Laboratory is supported by the National Institute of General Medical Sciences grant R35GM119627, the National Institute of Allergy and Infectious Diseases grant R21AI117262, and the National Science Foundation grant IOS-1456963.

REFERENCES

4. Izaki K, Matsuhashi M, Strominger JL. 1968. Biosynthesis of the peptido-
glycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and
\(\alpha\)-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in


of fluorescent \(\alpha\)-amino acids and their use for probing peptidoglycan
org/10.1038/nprot.2014.197.

7. Fura JM, Kearns D, Pires MM. 2015. \(\alpha\)-Amino acid probes for penicillin
binding protein-based bacterial surface labeling. J Biol Chem 290:

different nutrient receptors in germination of spores of Bacillus subtilis
and reduction of this cooperativity by alterations in the GcrR receptor.

Escherichia coli CFT073.

10. Roesch PL, Redford P, Batchelet S, Moritz RL, Pellett S, Haugen BJ,
Blattert FR, Welch RA. 2003. Uropathogenic Escherichia coli use \(\alpha\)-serine
deaminase to modulate infection of the murine urinary tract. Mol Micro-

2011. Inhibitory effects of \(\alpha\)-amino acids on Staphylococcus aureus bio-
JB.05534-11.

doi.org/10.1126/science.1188628.

not inhibit Pseudomonas aeruginosa biofilm formation. Laryngoscope

14. Sarkar S, Pires MM. 2015. \(\alpha\)-Amino acids do not inhibit biofilm formation in
1371/journal.pone.0117613.

fischeri DarF directs responses to \(\alpha\)-aspartate and represents a group of

16. Lyell NL, Septer AN, Dunn AK, Ducket D, Stoudemire JL, Stabb EV.
2017. An expanded transposon mutant library reveals that Vibrio
fischeri \(\delta\)-aminolevulinate auxotrophs can colonize Euprymna scolopes.

amurev.m47.100193.003121.

Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of
mucus secretion during symbiotic colonization of the Euprymna scolopes

19. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-
Ngai MJ. 2004. Microbial factor-mediated development in a host-
science.1102218.

20. Troll JV, Adin DM, Wier AM, Paquette N, Silverman N, Goldman WE,
Stademann FJ, Stabb EV, McFall-Ngai MJ. 2009. Peptidoglycan induces
loss of a nuclear peptidoglycan recognition protein during host tissue
development in a beneficial animal-bacterial symbiosis. Cell Microbiol

Attenuation of host NO production by MAMPs potentiates development

Mutations in ampG and lytic transglycosylase genes affect the net
release of peptidoglycan monomers from Vibrio fischeri. J Bacteriol

Pyrazolopyrimidinones are selective agents for Helicobacter pylori
that suppress growth through inhibition of glutamate racemase (Muri).
AAC.00226-09.

de Carvalho LPS. 2016. Glutamate racemase is the primary target of
\(\beta\)-chloro-\(\alpha\)-alanine in Mycobacterium tuberculosis. Antimicrob Agents

25. Mortuza R, Aung HL, Taiaroa G, Opel-Reading HK, Kleffmann T, Cook GM,
Krause KL. 2017. Overexpression of a newly identified \(\alpha\)-amino acid
transaminase in Mycobacterium smegmatis complements glutamate
mml.13877.

D’Aniello A. 2005. Cephalopod vision involves dicarboxylic amino acids:
\(\alpha\)-aspartate, \(\gamma\)-aspartate and \(\gamma\)-glutamate. Biochem J 386:331–340.
https://doi.org/10.1042/B20041070.

27. Steen AD, Jørgensen BB, Lomstein BA. 2013. Abiotic racemization kinet-
org/10.1371/journal.pone.0071648.