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The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host,
Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where
the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during
colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the
growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden
on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V.
fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability
to infect and multiply within the host during coinoculation experiments. Studies of the early stages of
colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were
exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels;
nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were
coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was
directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low
numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that

symbiotic infection is highly efficient.

The luminous bacterium Vibrio fischeri lives in a cooperative
association with the Hawaiian bobtail squid, Euprymna scol-
opes. The squid has developed a specialized light-emitting or-
gan to house the bacteria within the animal’s mantle cavity.
When juvenile E. scolopes squid hatch, they are symbiont free
and must acquire V. fischeri from the surrounding seawater
(27). The bacteria enter the nascent organ through six pores
which connect to ducts that, in turn, lead to specialized, epi-
thelium-lined crypts (18, 26, 30). Once inside these crypts, the
bacteria divide rapidly and fill the light organ with approxi-
mately 5 X 10° cells (34). During this colonization process,
after a critical cell density is reached, the bacteria induce the
lux operon and begin to luminesce. The animal can control the
amount of light emitted to the environment and uses this
luminescence during its nocturnal activities, probably as a
means to disguise itself from predators (42). At dawn, the host
expels approximately 95% of the bacteria; the remaining sym-
bionts multiply over the next 12 h, thereby providing the squid
again with a source of luminescence by nightfall (34).

The relationship between V. fischeri and its squid host is
complex and highly specific. For example, although sur-
rounded by seawater containing hundreds of different bacterial
species, juvenile E. scolopes squid become colonized only by V.
fischeri (5, 35). Lee and Ruby (19) used a lux gene probe to
determine that there were between 5 and 200 CFU of V.
fischeri per 100 ml of seawater in E. scolopes habitats. However,
subsequent work suggested that the actual number of V. fisch-
eri cells was between 100 and 1,500/ml of seawater, although

* Corresponding author. Mailing address: Pacific Biomedical Re-
search Center, University of Hawaii, Honolulu, HI 96813. Phone:
(808) 539-7309. Fax: (808) 599-4817. E-mail: eruby@hawaii.edu.

most of these cells, while symbiotically infective, were in a
cryptic state that did not form colonies on typical media (20).
Thus, it appeared that juvenile squid are normally colonized in
seawater containing a concentration of only a few hundred V.
fischeri cells per ml (34), although higher population densities
might occur in sediments (20). That V. fischeri cells constitute
less than 0.1% of the total bacterial community makes a strong
argument for both the specificity and the efficiency of this
benign infection process. In addition, successful colonization
of the animal by V. fischeri has been shown to trigger a complex
developmental program in the light-organ morphology of the
juvenile, and this program does not occur if the squid remains
uncolonized (11, 18, 30). This close linkage between coloniza-
tion and juvenile development further emphasizes the impor-
tance of the initiation of the relationship between host and
symbiont.

To understand the basis for both the efficiency and the
specificity of colonization more fully, we developed derivatives
of the site-specific transposon mini-Tn7 (22) to create differ-
entially marked strains of V. fischeri. These strains were used to
track the progeny of individual cells as they infected the light
organ of juvenile E. scolopes. Because in Escherichia coli and
other bacterial species Tn7 inserts itself in single copy, and
with high fidelity, into a specific and apparently unimportant
intergenic region (8, 13, 22, 33, 43), we adapted it as a useful
tool to chromosomally mark V. fischeri strains without affecting
their biological fitness.

In this study, we determined the efficiency of V. fischeri
infection of juvenile squid and used this information, as well as
two different mini-Tn7-tagged strains, to track symbiont pop-
ulation dynamics during the early stages of infection. Specifi-
cally, we determined (i) the number of cells associated with a
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TABLE 1. Bacterial strains, plasmids, and PCR primers used in this study

Strain, plasmid, or primer

Relevant characteristic(s) or sequence

Source or reference

V. fischeri
ES114 Wild-type light-organ isolate from E. scolopes 5
ESR1 Spontaneous Rf" mutant of ES114 14
JRM100 to JRM104 Five ES114 clones with mini-Tn7 insertion; Em* This study
JRM200 ES114 clone with mini-Tn7 insertion; Cm" This study
E. coli
BW23474 Alac-169 robAl creC510 hsdR514 uidA(AMIul)::pirl16 endA(BT33) recAl 28
CC118N\pir A(ara-lew) araD AlacX74 galE galK phoA20 thi-I rpsE rpoB argE(Am) 16
recA1; lysogenized with \pir
Plasmids
pEVS94S RO6K ori oriT Em* 41
pEVS104 Derivative of pRK2013; conjugal fra and trb genes 41
pEVS107 pEVS94S derivative, mini-Tn7; mob; Em" Kn" This study
pUXBF13 R6K ori; tns genes; Ap” 4
pCR2.1 PCR product cloning vector; ColE1 ori; Ap" Kn" Invitrogen Inc.
pJRM3 pEVS107 with Cm" replacing Em" This study
pEVS35 Cm" Xbal fragment cloned into Xbal site of pBC 39
Primers
IM1 5" GTTACACGTTACTAAAGGG 3’ This study
IM2 5" ACCAGACCGTTCAGCTGG 3’ This study
IM3 5" GGAACATGTGTGGTATGG 3’ This study
JM4 5" GACAGTCATCTATTCAAC 3’ This study

juvenile light organ in the first few hours following exposure to
V. fischeri, (ii) the influence of inoculum size on the onset and
ultimate level of animal luminescence within the first 48 h after
inoculation, and (iii) the role that inoculum size plays in de-
termining whether a symbiotic population is derived from a
single bacterial cell.

MATERIALS AND METHODS

Bacterial strains and media. Unless mentioned otherwise, V. fischeri cells were
grown with shaking at 28°C in either seawater-tryptone medium (SWT), which
contained 5 g of Bacto Tryptone-Peptone (Difco, Inc., Sparks, Md.), 3 g of yeast
extract, and 3 ml of glycerol per liter of 70% seawater (5), or LBS, which
contained 10 g of Bacto Tryptone-Peptone, 5 g of yeast extract, 50 ml of 1 M Tris
base (Sigma Chemical Co., St. Louis, Mo.) at pH 7.5, and 20 g of NaCl per liter
(10). Strains of E. coli were grown in either Luria-Bertani medium (7) or brain
heart infusion medium (Difco). All strains were stored at —80°C, and inocula for
cultures used in each experiment were grown from these frozen stocks. Antibi-
otics were used, when indicated, at the indicated concentrations: ampicillin, 100
pg/ml; chloramphenicol (CHL), 3 wg/ml for V. fischeri and 20 wg/ml for E. coli;
erythromycin (ERY), 3 to 5 wg/ml for V. fischeri and 150 wg/ml for E. coli;
kanamycin, 20 pg/ml; and rifampin, 100 wg/ml. For solid media, agar was added
to a final concentration of 1.5%. Unless otherwise noted, all chemicals were
obtained from Sigma Chemical Co. Oligonucleotides and primers (Table 1) were
synthesized by Integrated DNA Technologies (Coralville, Iowa) or Operon
Technologies (Alameda, Calif.). All restriction enzymes were obtained from New
England BioLabs (Beverly, Mass.), and T4 DNA ligase was obtained from Pro-
mega Corp. (Madison, Wis.). Genetic sequencing reactions were performed at
the Biotechnology-Molecular Biology Instrumentation Facility at the University
of Hawaii, Manoa.

Molecular techniques and genetic manipulations involving Tn7. To insert the
mini-Tn7 into the genome of V. fischeri, a compatible vector was created. The
mini-Tn7 vector pEVS107 (Table 1) was derived from pUX-BF5 (4) by replacing
the Kn" Sall cassette within the transposon with pEVS94S (41), which contains
an Em" cassette, linearized with Sa/l. The Kn" cassette was then reintroduced
into the vector, replacing a BamHI fragment that is located outside the trans-
poson.

Chromosomal insertion of Em" into V. fischeri ES114 by use of a mini-Tn7
cassette was performed as described previously (9, 43). Briefly, E. coli CC118\pir
(16) carrying pEVS104, two strains of E. coli BW23474 (28) carrying either

pEVS107 or pUX-BF13 (4), and V. fischeri ES114 (Table 1) were combined in a
tetraparental mating and incubated for approximately 12 h at 28°C. This conju-
gation mixture was then resuspended in LBS and spread onto LBS-agar plates
containing ERY. After incubation at 22°C for 24 to 48 h the ES114 colonies that
arose were screened for Em" and Kn®, and five clones (JRM100 to JRM104) were
selected. A second mini-Tn7-containing strain of V. fischeri ES114 was tagged
with Cm" as follows. The Cm" gene from pEVS35 (39) was excised on an Xbal
fragment and ligated into a derivative of pEVS107 that had previously been
digested with EcoRV and allowed to self ligate, resulting in the loss of its Em"
gene. After ligation, the resulting mini-Tn7-Cm" plasmid, pJRM3, was trans-
formed into E. coli BW23474 and mobilized by conjugation into V. fischeri ES114
as described above, producing the Cm"-marked strain JRM200. The number and
location of six independently arising mini-Tn7-Cm" insertions were determined
by Southern blotting and/or PCR amplification. Briefly, 3 ng of genomic DNA
was subjected to restriction enzyme digestion, separated by electrophoresis,
transferred to a nitrocellulose membrane, and analyzed by Southern hybridiza-
tion (38). The PCR amplification product from primers JM3 and JM4 (Table 1)
was used as a probe. The specific insertion sites of the transposon into the
chromosome of V. fischeri were determined by sequencing from either end of the
transposon by using primers JM1 and JM2 (Table 1).

Competition assays of Tn7-tagged strains in culture. The ability of the trans-
poson-tagged strains to grow as well as wild type in liquid medium was deter-
mined as follows. V. fischeri strains ES114, JRM100, and JRM200 were grown
separately with shaking for 18 h in SWT at 28°C. Approximately equal numbers
of cells of each strain were then combined, the mixture was diluted 1:100 in fresh
SWT, and the culture was split into three flasks. After approximately 20 h of
shaking, 1 ml of each culture was transferred into a new flask containing 15 ml
of fresh SWT. To determine the relative ratio of strains in the culture at various
times during growth, three 100-wl samples of each flask were removed, serially
diluted, and spread onto SWT agar plates. Representative CFU were screened
for antibiotic resistance and identified as either strain JRM100, strain JRM200,
or strain ES114.

Animal colonization experiments. Juvenile E. scolopes squid (approximately 1
mm in mantle length) were collected using a plastic eyedropper within minutes
of hatching from eggs laid in the laboratory and were held in natural seawater
(Waikiki Aquarium, Honolulu, Hawaii) for at least 30 min prior to inoculation
with strains of V. fischeri. This water contained fewer than 10> CFU/ml and did
not harbor V. fischeri cells in sufficient numbers to colonize the squid (31). To
determine the 50% infective dose (IDs), defined as the number of bacteria
required for colonization of 50% of the animals, juvenile squid were placed in
vials containing 4 ml of seawater inoculated with serial dilutions of a culture of
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V. fischeri ES114. Samples of the inoculum were spread on agar medium, and the
number of CFU that arose at 28°C was counted at 24 h. After a 3-h incubation
period at 22°C, the animals were rinsed and placed in vials of natural seawater.
The seawater was changed every 12 to 16 h. At 48 h postinoculation the lumi-
nescence of each juvenile E. scolopes was measured with a TD20/20 luminometer
(Turner Designs, Sunnyvale, Calif.). Because uncolonized squid do not produce
light (27), all animals with a luminescence reading significantly above back-
ground (i.e., >1.3 X 10* quanta/s) were considered colonized. In other experi-
ments the development of colonization was determined over a 48-h period by
using a liquid scintillation counter (TriCarb 2100TR; Packard Inc., Meriden,
Conn.) modified to measure the level of light emission, which is an indirect
measure of the number of V. fischeri cells in the light organ (27, 29).

Competition of marked V. fischeri strains for host colonization. To determine
whether the transposon-tagged strains have a competitive colonization defect
in symbiosis, equal numbers of V. fischeri ES114 and either JRM100 or
JRM200 organisms were coinoculated into seawater containing 16 juvenile E.
scolopes squid and incubated as described above. The inoculum was spread
onto SWT agar plates, and the resulting CFU were screened for antibiotic
resistance to determine the ratio of ES114 and the mini-Tn7-marked strains
in the inoculum. Approximately 24 h postinoculation, each animal was ho-
mogenized in 700 pl of sterile seawater in a 1.5-ul Eppendorf tube, and 100
wl of this homogenate (or serial dilutions of it) was spread on SWT agar to
determine the number of V. fischeri CFU per light organ (34). When the
juvenile light organ was dissected away from the rest of the body, and both the
light organ and the remaining body tissue were homogenized and plated
separately, CFU were detected only in the light-organ homogenate, and this
homogenate contained the same total CFU as did the whole-animal homog-
enate (34). Between 100 and 200 of the resulting colonies of V. fischeri were
screened for resistance to either CHL or ERY to calculate the proportion of
each marked strain in the colonizing population.

In a similar experiment the spontaneously occurring Rf* V. fischeri strain ESR1
(14) was also coinoculated with its wild-type parent as described above to de-
termine its colonization abilities. The proportion of Rf" V. fischeri cells in each
light organ at 24 and 48 h postinoculation was compared to that in the inoculum
as an indication of the success of V. fischeri ESR1 in competing for colonization
of the light organ.

Early kinetics of light-organ colonization. To determine the efficiency of
symbiotic colonization, three sets of 24 animals were incubated with three dif-
ferent concentrations of V. fischeri strain JRM100 as described above. Following
the 3-h incubation period, the animals were rinsed twice in 0.22-pm-pore-size-
filtered seawater (FSSW) and transferred to vials containing 4 ml of FSSW.
Twelve of these animals were placed in sterile 1.5-ml centrifuge tubes and
immediately homogenized in 200 pl of FSSW. The whole homogenate was then
spread onto SWT agar. The resulting colonies were counted and screened for
Em" and colony morphology. V. fischeri strain JRM100 was used so that it could
be more easily identified by its antibiotic resistance among any other bacteria
that might be present in the animal homogenates. The number of CFU of V.
fischeri JRM100 on each plate was a measure of the number of V. fischeri cells
that were associated with the animal 3 h after inoculation. The remaining 12
animals in each group were held for an additional 24 h and tested for lumines-
cence to determine the efficiency of colonization at the three different inoculum
concentrations used. In related experiments, animals were inoculated with dif-
ferent concentrations of green fluorescent protein (GFP)-labeled V. fischeri cells
(29) and observed under confocal scanning laser microscopy at between 3 and
10 h to determine the number and location of bacteria associating with the squid
light organ (32). Control experiments showed that all cells in the inoculum
expressed GFP (data not shown).

To estimate the number of V. fischeri cells that serve as the progenitors of
the light-organ population at low inoculum levels, juvenile squid were incu-
bated with seawater containing a mixture of V. fischeri strains ES114,
JRM100, and JRM200 in roughly equal proportions. In three separate ex-
periments with three different total inoculum concentrations, animals were
incubated as described above. Between 24 and 48 h postinoculation, each
animal was homogenized and aliquots of the homogenate were diluted in
sterile seawater and spread onto SWT agar. Between 100 and 200 CFU from
each animal were screened for resistance to CHL, ERY, or neither antibiotic
to identify the number of JRM100, JRM200, and ES114 bacteria present in
each light organ. The experiment was repeated four times, and the number of
animals that carried detectable progeny of one, two, or all three strains from
the V. fischeri inoculum was recorded.
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FIG. 1. IDs, of V. fischeri for symbiotic colonization. In two sepa-
rate experiments juvenile squid were incubated with different numbers
of V. fischeri ES114 cells, and the percentage of animals subsequently
colonized was determined. The dose at which 50% of the animals
became luminescent by 48 h postinoculation, indicated by the dotted
lines and black arrow, was determined using the equation y = 0.3735
Inx — 1.794 for experiment 1 (circles) and the equationy = 0.1381 Inx
— 0.2459 for experiment 2 (triangles).

RESULTS

Determination of the ID., and Kinetics of early colonization.
When exposed for as little as 3 h to about 250 V. fischeri cells
per squid, an average of 50% of juvenile E. scolopes squid
became colonized (Fig. 1), as indicated by the appearance of
host luminescence. Colonization was rare at inoculum levels
below 100 bacteria per animal, but colonization efficiency rap-
idly improved as the inoculum size increased, reaching 100% at
levels above 1,000 bacteria. Among juveniles that became in-
fected, those exposed to higher doses of V. fischeri cells became
luminescent earlier, and reached maximal Iuminescence
sooner, than those animals that were exposed to a lower dose
(Fig. 2). However, this enhancement reached a limit, and ex-
posing animals to more than 36,000 cells did not lead to a more
rapid colonization. Importantly, all animals became equally
luminescent by the end of the experimental period, indicating
that, while any of a wide range of doses is sufficient to initiate
colonization, the length of time required for onset of host
luminescence is inversely correlated with the size of the dose of
V. fischeri administered.

Effect of mini-Tn7 carriage on V. fischeri ES114. We created
genetically marked, but otherwise apparently normal, strains of
V. fischeri so that we could describe the nature of the popula-
tion of bacteria involved in the initiation of squid light-organ
colonization. Based on the biology of Tn7 in other systems, we
hypothesized that the mini-Tn7-Em" constructs in V. fischeri
ES114 would have a single chromosomal insertion site and that
the insertion would not affect the ability of bacteria to grow or
colonize. To test this hypothesis, the genomic fragment carry-
ing the transposon was cloned and sequenced from each of five
independently isolated clones (designated JRM100 to
JRM104), revealing that the point of insertion was in essen-
tially the same noncoding, intergenic region (Fig. 3). This re-
gion was downstream of an open reading frame encoding a
protein with 76% amino acid identity to the glmS product in E.
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FIG. 2. Kinetics of onset of animal luminescence as a function of V.
fischeri dose. Juvenile squid were incubated for 12 h in seawater con-
taining 40 (open diamonds), 580 (closed squares), 36,000 (open trian-
gles), or 800,000 (closed circles) V. fischeri cells, and the development
of luminescence by each animal was monitored (n = 12 for each dose).
Mean luminescence levels of those animals that became colonized are
reported in relative light units. Values below about 10° units indicate
no detectable light production. Error bars depict the standard errors of
the means.

coli and with 88% amino acid identity to the putative glmS
product in Vibrio cholerae (2, 15). Similarly, PCR analysis of
the insertion in JRM200 confirmed that the Cm"-containing
form of the transposon was inserted at the same genomic site
(data not shown). Southern analysis confirmed that each strain
received a single insertion.

To determine whether carriage of the insertion created a
significant growth burden, we examined the effect of the trans-
poson on cells growing in culture. Two Tn7-containing strains
(JRM100 and JRM200) and their wild-type parent (ES114)

Tn7 insertion point
Y (o »

JRM100: TCCGCCCACACTTGCCATTTTTGTAAG
L JRM101: TCCGCCCACA..CTGCCATTTTTGTAAG
JRM102: TCCGCCCACA..CTGCCATTTTTGTAAG

JBM103: TCCGCCCACAATGGCAGCGCTACTT
JBM104: TCCGCCCACA....GGCAGCGCTACTT

Tn7

inverted repeats V. fischeri sequence

>

FIG. 3. Site of mini-Tn7 insertions in the V. fischeri genome. PCR
products from insertion strains JRM100, JRM101, and JRM102 were
sequenced using a primer extending from the left end of the transpo-
son (labeled “L”), and products from strains JRM103 and JRM104
were sequenced from the right end of the transposon (labeled “R”).
The resulting sequences were aligned, and the predicted insertion
points are indicated.
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TABLE 2. Relative colonization abilities” of V. fischeri strains
carrying antibiotic resistance

RCI?
Strain
24 h 48 h
JRM100 0.91 +0.29 ND¢
JRM200 0.76 + 0.28 ND
ESR1 0.05 = 0.82¢ 0.03 = 0.167

“ Colonization ability was measured during competition with the parent wild-
type strain ES114.

® RCI, percentage of a given strain in the light organ divided by percentage of
that strain in the inoculum at 24 or 48 h postinoculation.

¢ ND, not determined.

@ The ability to colonize the light organ was significantly less than that of
wild-type V. fischeri (P < 0.05).

were coinoculated into SWT, and the ratio of the strains to
each other was determined during several rounds of subcul-
turing. The starting ratio of strains was maintained throughout
the 44 h of batch culture (data not shown), indicating that over
this period neither the relative growth rate nor survival in
stationary phase was significantly affected in the transposon-
bearing strains.

Light-organ colonization by Tn7 strains of V. fischeri. To
examine whether insertion of the mini-Tn7 affected symbiotic
competence, wild-type V. fischeri was coinoculated with either
strain JRM100 or strain JRM200 into seawater containing
juvenile E. scolopes. After 24 h, the mini-Tn7 insertion mutants
had colonized the light organ to the same degree as had the
wild type, as indicated by a relative competitive index value of
close to 1.0 (Table 2). We also examined the colonization
ability of V. fischeri ESR1 (14), a spontaneously occurring Rf"
mutant of V. fischeri ES114, to determine whether it could also
be used as a marked strain in multistrain colonization experi-
ments. However, unlike the mini-Tn7-marked strains, ESR1
comprised a significantly smaller portion of the squid light-
organ population than it did of the initial inoculum (Table 2),
demonstrating that ESR1 could not compete effectively with its
wild-type parent during colonization. For this reason V. fischeri
ESR1 was not used in the multistrain infection experiments
described below.

Having determined that transposon carriage did not appar-
ently affect colonization ability, we used JRM100 to investigate
how many bacterial cells become associated with the juvenile
light organ during the first few hours of the infection process.
In a representative experiment, when 36 juvenile squid were
exposed to either 340, 1,800, or 3,400 V. fischeri cells for 3 h
and then washed extensively, 35 of the animals had between
zero and four bacterial cells associated with their tissue. Of the
animals that were exposed to 1,800 or 3,400 cells, more than
half (60 to 92%) eventually became colonized, while only a few
(17%) of the animals exposed to 340 cells were successfully
infected (Fig. 4). At each inoculum level the percentage of
animals that had at least one cell associated with light-organ
tissue at 3 h postinoculation was correlated with the percent-
age of animals that eventually became colonized.

We used confocal microscopy to examine the early stages of
infection by GFP-labeled V. fischeri cells. When juvenile squid
were exposed to doses below 1,000 CFU/ml, we only rarely
observed aggregates containing over five bacteria associated
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FIG. 4. Evidence of the association of V. fischeri cells with host tissue 3 h after inoculation. Three sets of 24 animals were exposed to three
different doses of V. fischeri cells: 340, 1,800, and 3,400 per animal. The number of V. fischeri cells (as determined by CFU) associated with
light-organ tissue at 3 h postinoculation was determined (left panel) and compared to the percentage of animals that eventually became colonized

at these inoculation doses (right panel).

with the mucus or light-organ tissue, a value that compared
well with CFU determinations (data not shown). However,
animals of the same cohort that had been transferred into
natural seawater after exposure to the V. fischeri inoculum for
either 3 or 12 h became fully colonized. Therefore, at the lower
doses (below 1,000 CFU/ml) described in this study, it appears
that bacterial cells are infecting as individuals or a few cells and
not aggregating into large groups prior to entering the light
organ.

Simultaneous colonization with three V. fischeri strains. An
objective of this study was to describe the numbers and com-
position of the founding population of bacteria that can colo-
nize the light organ. The experimental results described above
suggested (i) that only a small number of bacterial cells were
necessary for a successful colonization and (ii) that the number
of cells that participated in the colonization was dependent on
inoculum density, at least at low inoculum concentrations. To
determine whether a single cell, or small group of cells, could
indeed be the sole symbiotic founder in a juvenile light organ,
we designed the following experiment. Groups of E. scolopes
squid were exposed to a mixed inoculum of V. fischeri contain-
ing equal cell numbers of wild type (ES114) and two differen-
tiable Tn7-carrying strains (JRM100 and JRM200), but at dif-
ferent total inoculum concentrations. We reasoned that, if the
light organ could be populated by a small initial population, or
even a single colonizing bacterium, it would be possible to find
light organs inhabited exclusively by only one of the three
marked strains, even though all three were in the inoculum.
We found that, when animals were exposed to large numbers
of V. fischeri cells in the mixed inoculum, light-organ popula-
tions would consist of two or more strains. However, when
exposed to a small inoculum, the animals were most often
colonized by only one of the three strains (Fig. 5), which
suggested colonization by a single cell or a small number of
cells.

DISCUSSION

All horizontally transmitted microbial associations, whether
beneficial or pathogenic, must develop mechanisms that en-
sure or enhance infection of the host. Often there is an attri-

tion of the inoculum by host defenses, such as that encountered
by V. cholerae cells during their passage through the stomach
(6). Unfortunately, even for well-studied pathogeneses, the
number of cells that survive and initiate the infection has been
difficult to determine, and it is usually impossible to visualize
and count the founding bacterial population in host tissue. In
this study we investigated the number and composition of V.
fischeri cells taking part in the initiation of light-organ coloni-
zation in E. scolopes. Using genetic and microscopic ap-
proaches, we determined that the efficiency of colonization is
dependent on the number of V. fischeri bacteria present in the
inoculum and that the symbiont population can be founded by
a few cells of V. fischeri.
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FIG. 5. Effect of the total dose on the frequency of colonization by
one, two, or three strains of V. fischeri from a mixed inoculum. Animals
were exposed to the following approximate doses of V. fischeri cells per
animal: 500 (open bars; n = 8), 5,000 (stippled bars; n = 15), 16,000
(striped bars; n = 20), and 27,000 (solid bars; n = 14). All doses
contained a mixed inoculum of approximately equal proportions of V.
fischeri strains ES114, JRM100, and JRM200. The number of different
strains detected in each light organ was determined 24 h postinocula-
tion.
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Mini-Tn7-marked V. fischeri strains. We used a mini-Tn7 to
differentially mark V. fischeri strains with two antibiotic resis-
tance cassettes and tracked their fate during the colonization
process. We demonstrated that both the growth rate and the
colonization efficiency (Table 2) of the V. fischeri mini-Tn7
insertion strains that we created were comparable to those of
the wild-type parent. We also showed that, as in E. coli, the site
of mini-Tn7 insertion in V. fischeri is an intergenic region (Fig.
3), located downstream of a glmS-like gene (8, 13, 22). Because
glmS encodes glucosamine—fructose-6-phosphate aminotrans-
ferase, an important enzyme in cell wall synthesis, it has been
conserved among many gram-negative bacteria (22). In previ-
ous work the transposon Tn7 has been used to insert reporter
constructs such as the gene for /ux (luminescence) (36) or GFP
(17) into the genomes of several species of gram-negative bac-
teria. The ability of Tn7 to integrate into the genome of V.
fischeri strain ESR1 was demonstrated previously (43), and it
has been shown to integrate into Vibrio anguillarum as well
(21). The transposon has also recently been used for genetic
complementation of chromosomal mutations (9), and similar
derivatives can now be used to replace the carriage of other
markers (e.g., GFP [32]) on plasmids, whose maintenance re-
quires continuous selection with antibiotics that can lower the
rate of normal colonization (data not shown).

Determination of the IDg,. V. fischeri is effective at coloniz-
ing the light organ of E. scolopes, requiring a dose of only about
250 cells for 3 h to infect 50% of its squid hosts (Fig. 1). Such
a low IDs, had been suggested from previous work (25, 34, 40)
and indicates that colonization is an efficient process. This IDs,
is especially remarkable because the dose is not directly intro-
duced into host tissue and is present in the surrounding sea-
water for only a limited time. In comparison, the analogous
50% lethal dose, which is the bacterial dose that causes death
in 50% of infected hosts, is typically much higher in other
Vibrio species. For instance, Vibrio parahaemolyticus and Vibrio
alginolyticus, two pathogens of shellfish, have reported 50%
lethal doses on the order of 10° bacteria per g of host tissue
(23, 24). This dose is 100-fold higher than what is required for
V. fischeri colonization and suggests an unusually efficient
mechanism of symbiotic infection by these bacteria. Such a
mechanism is not unexpected, considering that the natural
concentration of V. fischeri cells in the seawater inhabited by E.
scolopes is usually well below a thousand cells per ml of sea-
water (20). Similarly, while potential hosts resist infection by
pathogenic vibrios, E. scolopes has evolved a morphology and
behavior that encourage V. fischeri colonization (42).

V. fischeri colonization dynamics. Previous studies of the
initiation of colonization (31, 32) have revealed that the juve-
nile squid light organ secretes a mucus layer that preferentially
entraps V. fischeri cells present in the ambient seawater by a
process that is surprisingly like that occurring between rhizobia
and their leguminous hosts (12). In the squid, the action of
surface cilia removes approximately 1% of the V. fischeri bac-
teria from the water (S. Nyholm, personal communication),
forming bacterial aggregates in the mucus that, depending on
the dose, contain a few to hundreds of bacteria. These aggre-
gates eventually migrate to pores on the light-organ surface
and through ducts that lead to symbiotic crypts of the light
organ. Because the ducts are sites of a potential gauntlet of
host-produced oxidative stress (37), the question arose as to
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how many of the inoculating bacteria survive the initial colo-
nization events and become the progenitors of the resulting
population of symbionts.

In the work described here mini-Tn7-tagged V. fischeri cells
were used to examine the early colonization events during the
initiation of symbiosis. We focused on low inoculum levels of a
few hundred or thousand V. fischeri cells, levels at which the
rate of colonization appeared to be limited by dose (Fig. 1 and
2). Consistent with previous findings (34), the small number of
CFU (one to four) that arose from homogenates of juvenile
squid suggested that only a few cells had become associated
with the light organs under these inoculation conditions. Nev-
ertheless, such animals typically became subsequently colo-
nized, suggesting that only a few V. fischeri cells needed to be
present to initiate a successful colonization. Direct visualiza-
tion of V. fischeri cells in contact with host tissue correlated
with the number of CFU detected by plating, arguing against
the possibilities that either (i) the bacteria might be present in
larger numbers but are in aggregates that are not easily sepa-
rated when spread on agar or (ii) many of the cells have
entered a viable but nonculturable state (20).

When animals are exposed to a dose of over 10,000 V.
fischeri cells per ml, aggregates containing hundreds of these
bacteria are seen (32). At such large doses symbiotic lumines-
cence is detected 3 to 4 h sooner than in animals infected at or
around the IDs, (Fig. 2). Based on a doubling time in the light
organ of about 30 min (34), the number of cells initiating
colonization at these large doses is likely to be in the hundreds.
That is, it would take an inoculum of at least 256 cells to be
eight generations (i.e., 4 h) ahead of an inoculum as small as
one cell. The ability to infect the squid with hundreds of cells
is experimentally useful because this dose is sufficiently high to
make feasible in vivo expression technology approaches for
identifying host-induced bacterial genes (3). Traditional ge-
netic studies have already revealed a number of activities, e.g.,
flagellar motility (14, 29) and gene regulation (9), as well as
gene products, e.g., an outer membrane protein (1) and a pilus
(40), that are required for normal initiation of symbiosis. Fu-
ture microarray-based studies are likely to identify other bac-
terial activities that may underlie the high symbiotic infectivity
of V. fischeri.

Taken together, the data presented here indicate that V.
fischeri cells, even at the low concentrations that may be found
in nature, are highly efficient at colonization, due to a combi-
nation of intrinsic properties of the bacterium and selective
properties of the host (42). As a result only a few cells need to
be in immediate proximity to the light-organ tissue in order for
a full colonization to occur. To understand the mechanisms
responsible for this efficiency, future investigations will focus
on bacterial traits that underlie the species specificity that is
characteristic of this association, uncovering those genes whose
functions are important in the earliest stages of contact be-
tween bacterium and squid host tissue.
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