Symbiont Recognition and Subsequent Morphogenesis as Early Events in an Animal-Bacterial Mutualism

Author(s): Margaret J. McFall-Ngai and Edward G. Ruby
Published by: American Association for the Advancement of Science
Stable URL: http://www.jstor.org/stable/2879436
Accessed: 07-06-2018 16:45 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science
sp³ and sp bonding characters. The 27-GPa Raman spectrum is characteristic of graphite which is relatively well ordered, especially for shock-sensitized material. The crystal planar domain size, L₀ₐ, is estimated to be about 100 Å, based on the relative intensities of the 1355, 1580, and 2710 cm⁻¹ bands (19). This dimension corresponds to a graphitic sheet of 5 to 10 planar-reconstructed C₆₀ molecules. The weak peak mean bulk temperature 600°C is substantially lower than typical graphite annealing temperatures of 2000°C to 3000°C (20). Thus, the graphite is formed primarily by high pressure. However, strong heterogeneous shock-heating near pores may assist the graphite formation. The temperatures during or after the unloading processes are too low for forming ordered graphite. Increasing disorder in the graphite products, as pressure and temperature increase, is in marked contrast to conventional thermal annealing effects on graphite (20).

The synthesis of graphite near 17 GPa is consistent with the static pressure results. The C₆₀ ball is extremely incompressible and its molecular structure essentially remains unchanged at moderately high pressures. However, the center to center distance between nearest neighbor C₆₀ molecules collapses from 10.0 Å at ambient pressure to 7.82 Å at 17 GPa (3), which is comparable to the C₆₀ diameter 7.1 Å (17). Intermolecular C-C distances at 17 GPa are, then, expected to be close to the C=C bond length in C₆₀ and in graphite (21). Under these circumstances graphite can be formed through π-electron rehybridization (a fast process) without involving a great deal of atomic rearrangement (a slow diffusive process). That is, when the distance between C atoms on adjacent fullerences approaches the C-C distance in the C₆₀ cluster at 1.46 Å and in graphite (1.4 Å), and in graphite (the C-C distance in the plane 1.42 Å). Furthermore, it is expected that 2% reduction in the C-C bond angles in C₆₀ at 17 GPa may represent an upper limit. The interatomic C-C distances are then 1.51 Å, which is similar to the C-C bond lengths in C₆₀ (two bond lengths in the C₆₀ cluster are 1.46 Å and 1.40 Å) and in graphite (the C-C distance in the plane 1.42 Å).


20. Graphitization of carbon typically occurs by an annealing process at high temperatures of 2000°C to 3000°C, and the better ordered graphite is formed at the higher annealing temperature. The 27-GPa Raman spectrum in Fig. 2 is similar to that of graphite annealed at 2000°C or above, reported in the references: R. Vidano and D. B. Fischbach, J. Am. Ceramic Soc. 61, 13 (1978); P. Leopude, A. Marchand, M. Couzi, F. Cruege, Carbon 22, 875 (1984); Y. Hishiyama, M. Inagaki, S. Kimura, S. Yamada, ibid. 12, 249 (1974).

21. The interplanar distance changes in the sp² type bonds are typically less than a few percent at the pressure of 20 GPa. It may well be applied to a case of C₆₀. Assuming 2% reduction in the C-C bond length of C₆₀, the ball diameter is estimated to be 6.35 Å at 17 GPa. The interatomic C-C distances are then 1.51 Å, which is similar to the C-C bond lengths in C₆₀ (two bond lengths in the C₆₀ cluster are 1.46 Å and 1.40 Å) and in graphite (the C-C distance in the plane is 1.42 Å). Furthermore, it is expected that 2% reduction in the C-C bond angles in C₆₀ at 17 GPa may represent an upper limit.


23. We are pleased to acknowledge the contributions of N. Hinsey and W. Brocious for technical assistance and gun operations. We thank H. Cynn at UCLA for numerous discussions about C₆₀ and N. C. Holmes, M. van Thiel, and F. H. Ree at LLNL for discussions about thermal properties of carbon. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract number W-7405ENG-48.

Symbiont Recognition and Subsequent Morphogenesis as Early Events in an Animal-Bacterial Mutualism

MARGARET J. MCFALL-NGAI AND EDWARD G. RUBY

Bacterial colonization of the developing light organ of the squid Euprymna scolopes is shown to be highly specific, with the establishment of a successful association resulting only when the juvenile host is exposed to seawater containing one of a subset of Vibrio fischeri strains. Prior symbiotic infection of the squid E. scolopes and its monospecific culture of the luminous bacterium V. fischeri strains. Before a symbiotic infection the organ has elaborated epithelial structures covered with cilia and microvilli that are involved in the transfer of bacteria to the incipient symbiotic tissue. These structures regress within days following infection; however, they were retained in uninfected animals, suggesting that the initiation of symbiosis influences, and is perhaps a prerequisite for, the normal developmental program of the juvenile host.

BENEFICIAL ASSOCIATIONS WITH SPECIFIC BACTERIAL SYMBIONTS characterize many, if not all, animal species. Yet the mechanisms that determine recognition and specificity, or that control subsequent morphogenesis, in developing animal-bacterial mutualisms have remained remarkably undescribed. The light organ symbiosis between the squid E. scolopes and its monospecific culture of the luminous bacterium V. fischeri exhibits experimental advantages not found in other commonly studied animal-bacterial mutualisms. Specifically, the host...
Thus, as this seawater is pumped through emission during behavioral displays. This cells of V. fischeri, a common species of gan (4) in which is maintained about 10^7 properties permit the experimentally controlled concentration of less than 100 cells/ml (6).

has been successfully reared axenically under laboratory conditions (1, 2), and its luminous bacterial symbiont is a well-described and easily cultured species (3). These properties permit the experimentally controlled study of critical events in the establishment and maintenance of a symbiotic infection.

The mantle cavity of the adult E. scolopes contains a large, bilobed, light-emitting organ (4) in which is maintained about 10^7 cells of V. fischeri, a common species of luminous bacteria, related to such important animal-associated pathogens as V. cholerae and V. parahaemolyticus (5). The animal uses a number of differentiated tissue types (4) including a reflector, a muscle-derived lens, and a movable shutter, to modify the light emission during behavioral displays. This remarkably complex structure develops from a small rudiment in the center of the mantle cavity of a newly hatched squid. The rudiment is different from the adult organ in two important ways. First, it is free of symbiotic bacteria, which must be obtained anew by each juvenile host (2). Second, the rudiment bears a distinct structure on each of its lateral surfaces that facilitates the bacterial inoculation. Each structure consists of a large area of differentiated epithelial cells with a pair of anterior and posterior extensions that project into the mantle cavity. The entire structure is covered with a field of cilia and microvilli. Three pores occur at the base of each structure, and each pore (Fig. 1A) is an opening to a cilia-lined duct that leads into an interior, epithelium-lined space, or lacuna, within the incipient light organ (Fig. 1B).

Vibrio fischeri cells with the potential of infecting the lacunae are present in the seawater of the squid’s habitat at an apparent concentration of less than 100 cells/ml (6). Thus, as this seawater is pumped through the mantle cavity during normal ventilation, the squid must facilitate the passage of at least one (or more) symbiosis-competent bacterium through the pores on the surface of the incipient light organ. This process is enhanced by the position of the organ, which occupies much of the volume of the funnel, the exit pathway for water leaving the mantle cavity. Further, the tips of the two ciliated, microvillar structures on each side of the organ come in close contact forming a hollow “ring” of tissue, with the entry pores located at the inside of the “ring.” High-speed cinematography revealed that the effective beat of the cilia causes engulfment of the symbiont-containing water through this “ring” (7). This behavior can be expected to increase the probability that bacteria will approach and enter the pores and, if they are symbiosis-competent, produce the typical confined, benign infection that fills the lacunae (Fig. 1C).

Experimental manipulations of the infection process have shown it to be rapid and highly specific. Newly hatched squids failed to develop the capacity to emit bioluminescence when placed in filter-sterilized seawater (Fig. 2), even after an incubation of 10 days or more. However, placing juvenile squids in water to which had been added (per milliliter) 10^3 cells of certain strains of V. fischeri resulted in detectable light emission from the animal after 8 to 12 hours. The intensity of symbiotic luminescence in-

![Figure 1](image1.png)

**Fig. 1.** Route of the infecting bacterial symbionts into light organ tissue. (A) Ventral view of one half of the juvenile light organ. Each of the two epithelial structures initially bears three pores, two of which (arrows) are visible in this scanning electron micrograph (17). Scale bar, 50 μm. (B) Cross section of the infected juvenile light organ. Within 24 hours of inoculation, symbiotic luminous bacteria have entered and begun to grow within the light organ, densely colonizing the lacunae (16, 17). Scale bar, 8 μm. B, bacteria; E, host epithelial cells; i, ink sac; L, lacuna; and P, pore.

Table 1. Luminous bacterial strains capable of initiating a symbiosis in the juvenile E. scolopes light organ. Individual axenic squids (less than 24 hours post-hatch) were placed in vials containing 15 ml of filter-sterilized seawater to which the test bacterial strain (15) was added at a final density of about 10^6 cells per milliliter. After exposure to the inoculum for 12 hours at 25°C the squid was rinsed several times with, and subsequently maintained in, sterile seawater. A successful infection was judged by several criteria: the induction of symbiotic light emission by the squid (as shown in Fig. 2) and the presence of at least 10^5 cells of the inoculating strain in light organ homogenates (16). In addition, representative animals from each group were examined for histological evidence of bacterial colonization of the developing light organ (as shown in Fig. 1C).

<table>
<thead>
<tr>
<th>Species</th>
<th>Animals infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. fischeri, symbiotic strains isolated from:</td>
<td></td>
</tr>
<tr>
<td>E. scolopes (5) *</td>
<td>75 of 75</td>
</tr>
<tr>
<td>E. morsii (4)</td>
<td>17 of 17</td>
</tr>
<tr>
<td>M. japonicus (2)</td>
<td>22 of 22</td>
</tr>
<tr>
<td>V. fischeri, seawater strains isolated from:</td>
<td></td>
</tr>
<tr>
<td>Kanahebe Bay, Hawaii (8)</td>
<td>33 of 33</td>
</tr>
<tr>
<td>Santa Monica Bay, California (6)</td>
<td>0 of 51</td>
</tr>
<tr>
<td>V. logei (3)</td>
<td>0 of 9</td>
</tr>
<tr>
<td>V. harveyi (3)</td>
<td>0 of 15</td>
</tr>
<tr>
<td>V. vulnificus (1)</td>
<td>0 of 3</td>
</tr>
<tr>
<td>P. leiognathi (4)</td>
<td>0 of 16</td>
</tr>
<tr>
<td>P. phosphoreum (3)</td>
<td>0 of 13</td>
</tr>
</tbody>
</table>

*Numbers in parentheses are the number of different strains tested.

![Figure 2](image2.png)

**Fig. 2.** Onset and development of symbiotic light emission by juvenile E. scolopes squids exposed to different seawater suspensions. Newly hatched, axenic animals were rinsed in filter-sterilized seawater, and placed in a small vial containing 5 ml of either sterile seawater (Δ) or sterile seawater to which was added (per milliliter) 10^3 cells of the following V. fischeri isolates (15): symbiotic strains obtained from the light organs of specimens of E. scolopes (●) and E. morsii (○), or a free-living strain isolated directly from Hawaiian seawater (▲). Each squid was exposed continuously to its test inoculum for 12 hours, then rinsed several times with, and resuspended in, sterile seawater. Bioluminescence of the animal was monitored periodically by placing its vial in a light-tight chamber containing a photomultiplier tube (PMT) (3). Background dark current of the PMT: 10^6 quanta per minute.
Fig. 3. Developmental program of the ciliated, microvillous epithelial tissue on the light organ of the juvenile squid. (A) At the time of hatching, the tissue occurs as elaborate bilateral structures on the surface of the incipient light organ. Hindgut. (B) A 5-day-old juvenile squid that had been infected with symbionts immediately upon hatching. Much of the epithelial extensions are no longer apparent. (C) An 18-day-old symbiotic juvenile squid. (D) A 5-day-old uninoculated squid. All plates are at the same magnification; representative scale bar, 100 μm (17).

creased at an exponential rate, reaching approximately 10^4 times background levels within about 18 hours. This increase in light emission was paralleled by a rapid rise in bacterial numbers within the organ, approaching about 10^9 to 10^10 cells after 24 hours. Such rapid growth, combined with a thousand-fold induction in the specific activity of luciferase (3), the bacterial enzyme responsible for light emission, enabled the squid to produce within hours the visible levels of light emission characteristic of the symbiosis.

Most V. fischeri tested were competent symbionts (Fig. 2 and Table 1), including strains isolated from the light organs of adult E. scolopes, or the related squid, E. morses (8), and two strains recently isolated from the light organs of specimens of the symbiotically bioluminescent fish, Monocentris japonicus (9). In addition, V. fischeri strains isolated directly from seawater collected from the habitat in which E. scolopes are found (Kaneohe Bay, Hawaii) were capable of initiating symbiosis. Interestingly, some strains of V. fischeri, such as those isolated from Santa Monica Bay, California, were unable to colonize the light organ (Table 1). These results suggest that important symbiotic determinants may not be present in all strains of V. fischeri.

The inability to initiate a symbiosis also extended to other species of luminous bacteria, including strains of V. harveyi and Photobacterium leiognathi that were isolated from seawater collected in the squid’s natural habitat (9). Thus, even species of luminous bacteria that co-occur with, and are at least as abundant as (6), symbiosis-competent V. fischeri and that are found as symbionts in the light organs of other marine squids and fishes (10), cannot colonize E. scolopes.

Whereas a symbiotic association could be achieved by exposing hatchlings to nearshore seawater from their native Hawaiian habitat (Fig. 2), no successful infection resulted after exposure to seawater from coastal Southern California (Table 1). However, addition of symbiosis-competent bacteria to California seawater resulted in a typical infection process that was indistinguishable from that occurring with native Hawaiian seawater. Thus, the juvenile squid not only can select the appropriate species (and strain) of bacterium from the myriad of microorganisms. For example, metabolic products and regulatory compounds encoded by the symbiont genome are required for normal post-embryonic development of the sexual organs in some insects and of epithelial tissue and the immune response in vertebrates (14). The squid–luminous bacteria symbiosis is an emerging experimental system that makes accessible the study of how such associations with microorganisms are integrated into the general developmental program of an animal.

REFERENCES AND NOTES

Selective Cleavage of Human DNA: RecA-Assisted Restriction Endonuclease (RARE) Cleavage

LANCE J. FERRIN AND R. DANIEL CAMERINI-OTERO*

Current methods for sequence-specific cleavage of large segments of DNA are severely limited because of the paucity of possible cleavage sites. A method is described whereby any Eco RI site can be targeted for specific cleavage. The technique is based on the ability of RecA protein from Escherichia coli to pair an oligonucleotide to its homologous sequence in duplex DNA and to form a three-stranded complex. This complex is protected from Eco RI methylation; after methylation and RecA protein removal, Eco RI restriction enzyme cleavage was limited to the site previously protected from methylation. When pairs of oligonucleotides are used, a specific fragment can be cleaved out of genomes. The method was tested on λ phage, Escherichia coli, and human DNA. Fragments exceeding 500 kilobases in length and yields exceeding 80 percent could be obtained.

MAPPING LARGE GENOMES WOULD be greatly simplified and accelerated by development of a facile method to perform sequence-specific cleavage of DNA. In previous attempts to perform sequence-specific cleavage of genomic DNA, essentially two independent strategies have been followed. The first strategy used the ability of synthetic homopyrimidine oligonucleotides to anneal to duplex homopyrimidine-homopurine tracts to form triple-helical structures and has been used by several investigators to cleave genomes as large as Saccharomyces cerevisiae. This approach was first used by Moser and Dervan to cleave a plasmid by equipping the oligonucleotide with an EDTA-Fc cleavage moiety. Subsequently, other cleavage moieties were attached to homopyrimidine oligonucleotides (2), or guanine-rich oligonucleotides (3). The main disadvantage of this targeting approach is that only homopyrimidine or guanine-rich oligonucleotides have been used successfully. In a second strategy, Szymbalski and co-workers cleaved S. cerevisiae and E. coli genomes at a single introduced lac operator site (4). They first methylated Hae II sites in the DNA by using the lac repressor to protect a Hae II site within the lac operator from methylation. After removal of the methylation and the repressor, the only Hae II site unmodified and available for cleavage was in the lac operator. The advantages of this approach were the high yield and the high specificity. The main disadvantage was that only a lac operator site could be cleaved, although the method has been extended to oligopurimidine-binding sites (5).

In designing a general and efficient method to perform sequence-specific cleavage and targeting of genomic DNA, we have attempted to exploit the advantages of the first two strategies while avoiding the disadvantages. We have used the ability of recombinases to pair any oligonucleotide with its homologous duplex to form a three-stranded complex. This allows specific targeting of any desired sequence.

Recent work has established that recombinases such as the RecA protein can hybridize a single strand of any sequence to an intact duplex to form a novel DNA triplex in which the third strand may include both purines and pyrimidines (6, 7). For reasons that at this point are not clear, the protein-free structures that we have described can only be formed in good yields on the ends of duplexes (6). Recently, however, we have established that related (but not necessarily identical) structures coated with RecA protein can be formed and isolated in which the pairing need not be at the end of the duplex. In these structures a single strand as short as an oligonucleotide 15 bases long can be targeted to a homologous duplex (8). Furthermore, these complexes are resistant to

---

*To whom correspondence should be addressed.

SCIENCE, VOL. 254