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Summary

The bioluminescence emitted by the marine bacterium
Vibrio fischeri is a particularly striking result of indi-
vidual microbial cells co-ordinating a group behaviour.
The genes responsible for light production are prin-
cipally regulated by the LuxR–LuxI quorum-sensing
system. In addition to LuxR–LuxI, numerous other
genetic elements and environmental conditions
control bioluminescence production. Efforts to math-
ematically model the LuxR–LuxI system are providing
insight into the dynamics of this autoinduction behav-
iour. The Hawaiian squid Euprymna scolopes forms
a natural symbiosis with V. fischeri, and utilizes the
symbiont-derived bioluminescence for certain noctur-
nal behaviours, such as counterillumination. Recent
work suggests that the tissue with which V. fischeri
associates not only can detect bioluminescence but
may also use this light to monitor the V. fischeri
population.

Introduction

For several decades, bacterial bioluminescence has been
viewed as the quintessential example of microbial group
behaviour. Light production from a single, isolated bacte-
rium appears to be both biologically irrelevant and ener-
getically wasteful. However, the overall emission from a
group of cells is sufficiently high that eukaryotic organisms
as complex as fish and squid have evolved organs dedi-
cated to housing such bacteria, whose bioluminescence
is used during certain nocturnal behaviours, including

hunting and counterillumination (Haddock et al., 2010).
These host–microbe associations, such as the sepiolid
squid–vibrio symbiosis, are highly species specific, and
have also become model systems for discovering bacte-
rial colonization factors and host specificity determinants
(Visick and Ruby, 2006; Mandel, 2010).

The biochemical and genetic mechanisms underlying
bacterial bioluminescence are well understood, particu-
larly in members of the Vibrionaceae (Meighen, 1993). The
genes responsible for light production were first identified
in the marine bacterium Vibrio (Aliivibrio) fischeri, which
contains two chromosomes, and in some isolates, a large
plasmid (Engebrecht et al., 1983; Ruby et al., 2005). The
luxCDABEG genes, which are located on the second
chromosome, form part of an operon that encodes all of
the structural components necessary for light production
(Engebrecht et al., 1983) (Fig. 1A). At the core of light
production is the enzyme luciferase, which is a het-
erodimer composed of a and b subunits that are encoded
by luxA and luxB respectively. Luciferase releases light
during the mixed-function oxidation of a long-chain alde-
hyde (RCOH) and reduced flavin mononucleotide
(FMNH2) (Fig. 1B). LuxD diverts fatty acyl groups from the
fatty acid biosynthesis pathway to yield fatty acids for
luminescence (Boylan et al., 1989). LuxC activates the
acyl group with AMP, which is then reduced to the long-
chain aldehyde by LuxE. In this manner, LuxC and LuxE
are also able to recycle the long-chain fatty acid resulting
from the luciferase reaction by reducing it back to its
aldehyde form. LuxG was shown to reduce FMN produced
by the luciferase reaction (Nijvipakul et al., 2008).

The regulation of these bioluminescence genes is inher-
ently linked with quorum sensing, which is the chemical-
based form of intercellular communication by which many
bacteria co-ordinate population- or community-level
behaviours. The term quorum sensing was originally
devised to define the general autoinduction phenomenon
associated with certain bacterial behaviours, such as the
production of bioluminescence by cultures of V. fischeri
(Fuqua et al., 1994). Briefly, as V. fischeri cultures grew, a
signalling molecule (autoinducer) accumulated in the
media.At a certain threshold concentration, the cells would
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respond to the autoinducer by producing light. The regula-
tory elements primarily responsible for autoinduction
turned out to be LuxI, which synthesizes the autoinducer
molecule, and LuxR, an autoinducer-dependent transcrip-

tion factor (Fig. 2A). The subsequent realization that
LuxR–LuxI systems not only are prevalent among bacteria
but also regulate genes involved in pathogenesis, biofilm
formation, genetic competence and antibiotic production

Fig. 1. A. The lux locus consists of genes
encoding proteins involved in regulation (LuxR
and LuxI) and in the production of
luminescence (LuxA–G).
B. Enzymatic properties of structural genes
within the lux operon.
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Fig. 2. A. LuxR–LuxI module. The
LuxR/3-oxo-C6 complex activates
transcription of the luxI promoter. Positive
feedback at this promoter results in a
threshold response to autoinduction.
B. cis-regulatory components of the luxR–luxI
intergenic region. Transcriptional start site of
lux genes is indicated by the ‘+1’. Convergent
arrows highlight inverted repeat of unknown
function. CRP, ArcA and LuxR/3-oxo-C6 (lux
box) binding sites are shown. Upper case
letters within lux box have been shown to be
important for activation by LuxR/3-oxo-C6.
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spawned great interest in the field of bacterial quorum
sensing.

In this MicroReview, we review what is known about the
LuxR–LuxI signalling module in V. fischeri. In particular,
we focus on the primary components of the LuxR–LuxI
module, as well as additional transcription factors that
regulate the module in trans. In light of the general inter-
ests in modelling the dynamics of this module, we also tie
together these results to emphasize novel variables to
include as modelling parameters.

The core LuxR–LuxI module

LuxI and N-3-oxohexanoyl-homoserine lactone

In V. fischeri, luxI encodes a protein of 193 amino acids
that catalyses the synthesis of the autoinducer N-3-
oxohexanoyl-homoserine lactone (3-oxo-C6) (Schaefer
et al., 1996). In particular, LuxI converts the substrates
S-adenosylmethionine (SAM) and hexanoyl-acyl carrier
protein (ACP) to three products: 3-oxo-C6, 5′-methyl-
thioadenosine and apo-ACP.

3-oxo-C6 rapidly diffuses across prokaryotic cell mem-
branes and, as a result, the cytoplasmic concentration
equilibrates to that present in the surrounding environ-
ment (Kaplan and Greenberg, 1985). A relatively low
level of 3-oxo-C6 (e.g. 120 nM) is sufficient to induce
maximal luminescence output from V. fischeri cultures
(Lupp et al., 2003), highlighting the sensitivity bacteria
have evolved towards autoinducer molecules. It is pre-
cisely this high level of sensitivity that has encouraged
researchers to pursue the production of non-native
modulators of quorum-sensing systems in pathogenic

microbes (Chen et al., 2011; McInnis and Blackwell,
2011).

While the structure of LuxI has not yet been determined,
structures of EsaI and LasI, which are LuxI homologues in
Pantoea stewartii and Pseudomonas aeruginosa, respec-
tively, have been solved (Watson et al., 2002; Gould et al.,
2004). Both structures contain a V-shaped cleft formed
between beta strands b4 and b5 that forms the active site
for acyl transfer from ACP to SAM (Fig. 3A). Next to the
V-shaped cleft is a large electrostatic cluster comprised of
several residues conserved among LuxI homologues that
presumably contributes to protein stability (Fig. 3B). A
mutagenesis study of LuxI identified 11 residues critical
for the synthesis of autoinducer (Hanzelka et al., 1997);
six of these residues (R25, E44, D46, D49, R70 and
R104) map near or directly to this cluster. Two other
residues identified from the screen (A133 and E150) map
to alpha helices a6 and a7. Due to the proximity of these
alpha helices to the V-shaped cleft, the associated muta-
tions presumably disrupt substrate recognition.

Theoretically, the rate of autoinducer synthesis would
have an impact on the timing of autoinduction within a
population of cells present in a given volume. One study
linked the LuxI catalytic rate of autoinducer production to
ampicillin resistance, thereby enabling a selection for LuxI
mutants with higher rates of 3-oxo-C6 synthesis (Kambam
et al., 2008). In particular, an E63G mutation appears to be
responsible for an approximately 30-fold increase in
3-oxo-C6 production, although the LuxI levels in these
mutants were approximately twofold higher. Interestingly,
the LuxI homologues of two symbiotic V. fischeri strains,
ES114 [isolated from a squid light organ (Boettcher and

A B

Fig. 3. A. Structure of LasI, the LuxI homologue in P. aeruginosa.
B. Electrostatic cluster within LasI.
Images were originally published in Gould et al. (2004).
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Ruby, 1990)] and MJ11 [isolated from a fish light organ
(Mandel et al., 2009)], produce low and high levels of the
3-oxo-C6 autoinducer, respectively (Stabb et al., 2007),
and they exhibit three allelic variants in this region (T62A,
N64E and S66N for ES114 compared with MJ11), which
map to the beta turn located between b2 and b3. Impor-
tantly, the relative levels of LuxI within ES114 and MJ11 are
unknown, so attributing the different autoinducer levels
solely to different catalytic rates between the two alleles is
not possible at this time. However, further sequencing and
catalytic characterization of LuxI proteins from different
V. fischeri isolates will reveal the impact of the enzymatic
activity of LuxI on bioluminescence production.

LuxR

The V. fischeri luxR gene encodes a transcription factor
that activates the expression of the luxICDABEG operon
(Fig. 1A) in response to the presence of 3-oxo-C6
(Fig. 2A). Initial attempts to study LuxR in vitro were ham-
pered by the presence of two potential start codons sepa-
rated by a single codon in the luxR gene of V. fischeri
MJ1, another fish light-organ strain. It was only after
N-terminal sequencing of a C-terminal His-tagged LuxR
revealed that over 90% of the protein was initiated at the
upstream start codon that LuxR was successfully over-
produced and isolated in the presence of 3-oxo-C6
(Urbanowski et al., 2004). In contrast to strains obtained
from fish, only a single possible start codon is present
within the luxR gene of squid-derived symbionts such as
strain ES114. The sequence of luxR, as well as the other
lux genes, exhibits higher diversity than the genes sur-
rounding the locus, consistent with the hypothesis that the
lux genes are under strong selective pressure that varies
in different environments (Bose et al., 2011). In fact, serial
passaging of bright V. fischeri isolates through naïve
squid lead to the emergence of descendants with lower
luminescence profiles, which are typical of symbionts iso-
lated from wild-caught squid (Schuster et al., 2010).

Like LuxI, the structure of LuxR has yet to be determined.
However, several mutagenesis studies of LuxR have dem-
onstrated that the autoinducer and DNA-binding domains
are distinct. For example, overexpression of the N-terminal
two-thirds of LuxR is sufficient to bind autoinducer (Han-
zelka and Greenberg, 1995). The remaining C-terminal
end of LuxR is sufficient to bind DNA, interact with RNA
polymerase, and activate transcription of the lux promoter
in an autoinducer-independent manner (Choi and Green-
berg, 1991; Finney et al., 2002). This C-terminal fragment
of LuxR also activates the lux promoter to higher levels
than the full-length protein (Choi and Greenberg, 1991),
suggesting that the N-terminal domain prevents LuxR-
mediated gene regulation unless bound to autoinducer.
The structure of the LuxR-homologue TraR bound to both

autoinducer (N-3-oxooctanoyl-L-homoserine lactone) and
DNA shows that the autoinducer- and DNA-binding
domains are separated by a linker (Zhang et al., 2002),
supporting the interpretations of the results described
above. Interestingly, the autoinducer binds irreversibly to
TraR, and, based on the structure, is completely encased
by the protein (Zhu and Winans, 2001; Zhang et al., 2002).
In contrast to TraR, LuxR binds 3-oxo-C6 reversibly, a
difference that may play a role in the rapid inactivation of
lux expression that is observed during transition from high
to low cell densities (Urbanowski et al., 2004). Determining
the structure of LuxR/3-oxo-C6 complex will yield mecha-
nistic insight into this reversible binding, which may assist
V. fischeri to rapidly alter gene regulation by LuxR when
cells are suddenly transitioned from high- to low-nutrient
environments (e.g. when cells are released from the light
organ into seawater).

The LuxR/3-oxo-C6 complex binds to a 20 bp sequence
within the luxR–luxI intergenic region referred to as the
‘lux box’ (Fig. 2B) (Stevens et al., 1994). The lux box is
centred 42.5 bp upstream of the luxI promoter start site,
indicating the LuxR/3-oxo-C6 complex serves as a tran-
scriptional activator (Egland and Greenberg, 1999). A sys-
tematic mutational analysis of the lux box demonstrated
that base pairs located at positions 3–5 and 16–18 are
critical for LuxR regulation of lux expression (Antunes
et al., 2008). The presence of this overall dyad symmetry
in the lux box supports the general assumption that LuxR
regulates gene expression as a dimer. While dimerization
of LuxR has yet to be shown, analysis of TraR has shown
that this transcription factor acts as a dimer, and that
dimerization contributes to the stability of the protein
(Pinto and Winans, 2009). Resistance to proteolysis is
also conferred by complexing with its cognate autoin-
ducer, N-3-oxooctanoyl-L-homoserine lactone, which
binds irreversibly to TraR (Zhu and Winans, 2001).

A microarray study has shown that LuxR also regulates
genes other than those in the lux locus (Antunes et al.,
2007). Of 25 genes shown to be differentially regulated by
at least 2.5-fold in the presence of 2.3 mM 3-oxo-C6 com-
pared with the absence of 3-oxo-C6, 24 genes were
upregulated and 1 gene was downregulated. The 25
genes are located within 13 operons, and the LuxR/3-
oxo-C6 complex directly binds to 7 of the corresponding
promoter elements. Two of the genes identified in this
study are of particular interest. VF_1615, which encodes
a hypothetical protein with an N-terminal transmembrane
domain, is the first example of direct negative regulation
by LuxR in V. fischeri. VF_A1058, which is also referred to
as qsrP, has repeatedly appeared in the literature asso-
ciated with LuxR regulation (Callahan and Dunlap, 2000),
most recently as one of the most highly expressed pro-
teins found in bacteria associated with the squid light
organ (Schleicher and Nyholm, 2011). While the function
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of QsrP is currently unknown, a qsrP mutant displays a
defect in colonizing juvenile squid when competed against
its parental strain in a co-colonization experiment (Calla-
han and Dunlap, 2000). Future studies involving qsrP
mutants of V. fischeri will help determine whether QsrP
plays a LuxR-mediated role in symbiosis that does not
involve luminescence.

trans regulators of bioluminescence genes

As determined in V. fischeri strain MJ1 (Egland and Green-
berg, 1999), the regulatory region called the lux box is
located 42.5 bp upstream of the transcriptional start site of
the luxICDABEG operon. In addition to LuxR, other regu-
latory proteins have been shown to regulate expression of
the lux locus in trans (Fig. 4). A recent analysis comparing
the luxR–luxI intergenic regions of various other V. fischeri
isolates revealed high conservation of several base pairs in
addition to those shown to be critical for LuxR activity (Bose
et al., 2011). These bases may be important for DNA
conformation and/or recruiting RNApolymerase. This com-
parative analysis of the luxR–luxI intergenic region also
revealed that the binding sites of two transcriptional regu-
lators, cAMP receptor protein (CRP) and ArcA (see below),
are also relatively conserved. Interestingly, the CRP
binding sites displayed somewhat more sequence diver-
gence, which may suggest that the role of catabolite

repression may differ due to the particular carbon sources
available within the various host environments inhabited by
V. fischeri.

ArcB–ArcA

The ArcB–ArcA system directly regulates lux expression
in V. fischeri (Bose et al., 2007). ArcB is a histidine kinase
protein that senses the redox state of the cell’s quinone
pool. Under conditions that result in reduced quinones
[e.g. either oxygen- or reactive-oxygen species (ROS)-
poor environments], ArcB will phosphorylate the response
regulator ArcA, which regulates expression of a number of
genes (Gunsalus and Park, 1994). Two potential ArcA
binding sites have been identified in the luxR–luxI inter-
genic region of ES114 (Bose et al., 2007); however, only
site 1 is conserved among different isolates of V. fischeri
(Bose et al., 2011) (Fig. 2B).

The direct repression of lux expression by ArcA in
V. fischeri is independent of 3-oxo-C6 autoinducer. An
intriguing possibility suggested by Bose et al. is that the
ArcB–ArcA system serves as a feed-forward mechanism
to prevent the expression of lux genes in the absence of
oxygen and to prime bacteria for colonization through the
detection of ROS (Bose et al., 2007; Small and McFall-
Ngai, 1999). Another possibility is that the ArcB–ArcA
system enables cells to shut down luminescence as
oxygen becomes limiting, even when 3-oxo-C6 levels
remain high. Additional experiments comparing the lumi-
nescence response to 3-oxo-C6 and oxygen availability
will be required to refine these models.

cAMP-CRP

The effect of catabolite repression on luminescence in
V. fischeri is well documented but poorly understood.
Early experiments demonstrated that the presence of
glucose in growth medium would repress culture lumines-
cence, and the addition of cAMP would eliminate this
repression (Friedrich and Greenberg, 1983). The interpre-
tation of this result is complicated by the observation that
the transient addition of cAMP is sufficient to permanently
eliminate the repression of luminescence by glucose. The
effect on luminescence is thought to be due to activation
of luxR expression by the direct binding of the CRP/cAMP
complex to a specific site within the luxR–luxI intergenic
region (Fig. 2B). CRP/cAMP binding to the luxR–luxI inter-
genic region also represses lux transcription; however,
levels of LuxR above a threshold value are sufficient to
overcome this repression during autoinduction.

Very little research examining the regulatory role of
CRP/cAMP on luminescence in V. fischeri has been
conducted in the past two decades. However, recent
examination of the transcriptome of natural V. fischeri

Non-luminous strains of V. fischeri

Bioluminescence had been thought to be a defining characteristic
of the species V. fischeri. However, a recent study reports the first
case of non-bioluminescent (i.e. ‘dark’) strains of V. fischeri iso-
lated from the environment (Wollenberg et al., 2011). Interest-
ingly, the majority of these dark isolates lack the entire lux locus,
rather than SNPs or INDELs within specific lux genes, as has
been reported in other Vibrio species (O’Grady and Wimpee,
2008), suggesting that the lux locus is lost by natural selection
rather than genetic drift. Using V. fischeri-specific markers other
than the lux locus, Wollenberg et al. demonstrated that the dark
strains examined exhibit polyphyly, i.e. the ancestors of individual
isolates that lost the lux locus arose independently.

These findings suggest that our knowledge of how V. fischeri
interacts with the environment has been biased by (i) selection
heavily biased towards (visibly) luminescent isolates from natural
seawater samples, and (ii) studies of isolates from host environ-
ments where bioluminescence is required. What are the selective
pressures that result in the loss of bioluminescence? Because the
lux genes are under control of quorum sensing, planktonic cells
within the water column will not express detectable lumines-
cence, suggesting that the evolutionary pressure to lose the lux
locus exists elsewhere. One possibility is within the sediment,
where V. fischeri encounters other bacteria that synthesize 3-oxo-
C6, and together will achieve a sufficient quorum to induce lux
gene expression. The general loss of the entire lux locus in these
strains suggests that it is the bioluminescence genes that are
under negative selection, rather than merely LuxR-mediated
regulation. However, phylogenetic analyses of other LuxR-
regulated genes in these dark strains are necessary to rule out
this possibility.
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populations within adult squid light organs has revealed
complex metabolic patterns that vary according to the diel
rhythm (Wier et al., 2010). In particular, genes involved in
the utilization of N-acetylglucosamine (GlcNAc) and its
polymeric form, chitin, are elevated at night, when the
squid uses the symbiont’s bioluminescence. The repressor
NagC regulates a subset of these genes as well as other
GlcNAc-utilization genes such as nagE, nagA and nagB
(Miyashiro et al., 2011). While the effect of catabolite
repression on these genes is unknown in V. fischeri, CRP
has been shown to bind upstream of their homologues in
Escherichia coli (Plumbridge and Kolb, 1991). In light of the
sequence diversity exhibited by different V. fischeri iso-
lates at the CRP binding site within the luxR–luxI intergenic
region (Bose et al., 2011), it would be interesting to deter-
mine whether the levels of luminescence produced by
these isolates also show a rhythm within the squid.

LitR

The transcriptional regulator LitR was first identified
through a search for the V. fischeri homologue of LuxR in
Vibrio harveyi (no relation to the V. fischeri LuxR-like
protein family), and HapR in Vibrio cholerae (Fidopiastis
et al., 2002). LitR was shown to directly bind a fragment of

DNA upstream of the V. fischeri luxR gene, independent
of the lux box, and enhance luxR expression without
affecting expression of the other lux genes, as measured
by transcription of luxC.

Subsequent studies have revealed that LitR is indeed a
pleiotropic regulator. For instance, LitR negatively regu-
lates both soft-agar motility (Lupp and Ruby, 2005) and
colonization of the squid light organ (Fidopiastis et al.,
2002; Miyashiro et al., 2010). In addition to luxR expres-
sion, LitR positively regulates expression of acs and rpoQ,
which in turn regulate two symbiosis-related activities:
organic-acid secretion and chitinase activity respectively
(Cao et al., 2012; Lupp and Ruby, 2005; Studer et al.,
2008). Further studies are required to determine the com-
plete LitR regulon, which may yield insight into the factors
within the regulon of HapR that enable V. cholerae to
colonize the human gut (Tsou et al., 2009).

Other QS systems in V. fischeri

AinS–AinR and LuxS–LuxP/Q

Vibrio fischeri regulates luminescence with at least two
other quorum-sensing systems, which are based on the
autoinducer molecules N-octanoyl-homoserine lactone
(C8) and autoinducer-2 (AI-2), a furanosyl borate diester

Fig. 4. Multiple systems regulate expression
of the lux locus in V. fischeri. The relative
kinase/phosphatase activities of the histidine
kinases AinR and LuxQ towards the HPT
protein LuxU are determined by the
concentrations of C8 and AI-2 respectively.
Phosphorylation of the response regulator
LuxO by LuxU leads to expression of qrr1,
which encodes a sRNA that
post-transcriptionally represses litR transcript.
LitR directly regulates the expression of luxR.
Also shown are CRP/cAMP and ArcA-P, which
directly regulate the expression of the lux
genes.
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(Fig. 4). C8 is synthesized by AinS, and detected by the
histidine kinase AinR and LuxR (Lupp et al., 2003). As in
all Vibrio spp., AI-2 is synthesized by LuxS and detected
by LuxP, a periplasmic protein that interacts with the
histidine-kinase sensor LuxQ (Neiditch et al., 2006).

The AinS–AinR system has garnered considerable
attention in the V. fischeri field because it exerts a greater
impact on bioluminescence and host colonization than the
parallel LuxS–LuxP/Q system (Lupp and Ruby, 2004).
Specifically, the luminescence emitted by an ainS mutant,
in broth culture or within the squid light organ, is attenuated
compared with wild-type cells. Interestingly, theAinS–AinR
system appears to be specific to the Aliivibrio clade of
Vibrionaceae (which includes V. fischeri ), although weak
homology does exist with the LuxM–LuxN system found in
V. harveyi; however, LuxM synthesizes a structurally
distinct hydroxyl autoinducer, N-(3-hydroxybutanoyl)
homoserine lactone. In the absence of C8, AinR is thought
to act as a kinase towards the histidine phosphotrans-
ferase (HPT) protein LuxU. Direct biochemical evidence of
this interaction has yet to be reported; nevertheless, such
phosphoryl-based interactions between LuxN and LuxU
have been demonstrated in V. harveyi (Timmen et al.,
2006).

LuxP/Q, which is conserved in the Vibrionaceae, also
can phosphorylate LuxU when the AI-2 concentration is
low. However, signalling by AI-2 appears to be inconse-
quential during the initiation of symbiosis by V. fischeri,
because a DluxS mutant displays wild-type levels of biolu-
minescence and host colonization (Lupp and Ruby, 2004).
Only in the absence of C8 signalling does the presence of
AI-2 have a detectable effect on these activities.

The role of small RNAs in QS

The LuxO module, which consists of LuxU, LuxO and the
small regulatory RNA Qrr1, are genetically linked and
conserved among the Vibrionaceae. In V. fischeri, the
luxOU and qrr1 operons are transcribed from divergent
promoters, based on similar genetic architectures in
V. harveyi and V. cholerae (Lenz et al., 2004; Miyashiro
et al., 2010; Tu et al., 2010).

The HPT protein LuxU serves as an intermediate com-
ponent within the phosphorelay. The convergence of
signals from at least two histidine kinases (AinR and
LuxQ) onto a single protein (LuxU) is an example of a
‘many-to-one’ branched pathway prevalent among bacte-
rial two-component signalling systems (Laub and Goulian,
2007). This branched relationship involving LuxU is also a
shared trait in the Vibrionaceae (Milton, 2006), and the
apparent promiscuity of LuxU may, in fact, enable different
histidine-kinase sensors to access the LuxO module more
easily through evolutionary convergence or divergence.
Investigation into the specificity determinants enabling the

conserved, branched network involving LuxU will yield
insight into a regulatory pathway that is fundamental to
quorum sensing in this bacterial family.

LuxO is a s54-dependent response regulator that tran-
scriptionally activates qrr1 when phosphorylated (Lilley
and Bassler, 2000; Miyashiro et al., 2010). Characteriza-
tion of LuxO binding sites in V. harveyi suggests that the
response regulator recognizes the consensus sequence
‘TTGCAWWWTGCAA’ found upstream of each of the five
qrr genes in this species (Tu and Bassler, 2007; Tu et al.,
2010). In V. fischeri, there are only two putative binding
sites found in the entire genome, both of which are
located in the qrr1–luxOU intergenic region, and are sepa-
rated by 21 bp. Determining how these two binding sites
impact the regulation of qrr1, and possibly luxOU,
requires further investigation, and may yield interesting
regulatory patterns associated with the level of phospho-
rylated LuxO.

The Qrr class of small regulatory RNAs was originally
discovered during a genetic screen that had identified the
RNA chaperone Hfq as a negative regulator of biolumi-
nescence in V. harveyi (Lenz et al., 2004). Further char-
acterization revealed that the V. harveyi and V. cholerae
genomes contain five and four qrr homologues, respec-
tively, that each have the capacity to post-transcriptionally
control the transcript level of their LitR master regulator
homologues (e.g. LuxR and HapR). Direct base-pairing
between hapR mRNA and a 21 bp region conserved
among Qrrs has recently been shown in V. cholerae
(Bardill et al., 2011). Several other vibrio mRNAs are also
controlled post-transcriptionally by direct Qrr association
with the same region of the sRNAs (Hammer and Bassler,
2007; Rutherford et al., 2011; Svenningsen et al., 2009).
Subsequent work has demonstrated that individual Qrrs
may differentially regulate other targets, due to additional
pairing that includes sRNA nucleotides that are not con-
served but specific to a single Qrr (Shao and Bassler,
2012). However, a unifying model to explain the general
role of multiple qrr genes has remained elusive.

We recently examined the evolutionary history of the
LuxO module by performing phylogenetic analyses of the
luxO and litR homologues from all fully sequenced Vibri-
onaceae members (Miyashiro et al., 2010). Resulting
phylograms were found to have congruent topology, sug-
gesting that these two signalling proteins have had a
similar evolutionary history during the divergence of the
Vibrionaceae. Remarkably, the number of qrr genes found
within the genome of each Vibrionaceae member clus-
tered according to its position on the phylogenetic tree. In
particular, the species within the Aliivibrio clade, which
includes V. fischeri, possess only a single qrr gene (qrr1),
which is linked to its luxOU operon. One parsimonious
hypothesis is that the single qrr gene found in V. fischeri is
most closely related to an ancestral qrr gene from which
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the multiple other qrr paralogues have derived (Tu and
Bassler, 2007; Tu et al., 2010). A functional examination of
qrr1 in V. fischeri revealed that Qrr1 is both necessary and
sufficient for LuxO-mediated regulation of LitR, further
supporting its ancestral position (Miyashiro et al., 2010).
Discovering the biological advantage that drove the mul-
tiplication and diversification of qrr paralogues in some
clades of Vibrionaceae will likely be challenging but will
ultimately contribute to our understanding of the evolution
of quorum signalling in these and other bacteria.

Network analysis of the LuxR–LuxI module

The semi-autonomous nature of the LuxR–LuxI module
enabled the initial analyses of autoinduction dynamics to
be performed in E. coli (Engebrecht et al., 1983). These
studies led to a long-standing research focus on deter-

mining the role of positive feedback within the LuxR–LuxI
system, which arises from the positive regulation of the
3-oxo-C6 synthase-encoding luxI gene by the LuxR/3-
oxo-C6 complex (Fig. 2A). In general, positive feedback
within regulatory circuits is often associated with bistabil-
ity, which describes the presence of two steady states (i.e.
on and off) over a range of stimuli. However, the mere
presence of positive feedback is not sufficient to guaran-
tee such behaviour. In fact, analysis of the LuxR–LuxI
system demonstrated that the pattern of luminescence
production by V. fischeri as a function of cell density was
consistent with a threshold response, which allows only
one stable state for each stimulus level (Haseltine and
Arnold, 2008). However, using the same core compo-
nents (LuxR, LuxI, and positive feedback), the authors
were able to design regulatory-circuit architectures that
yielded graded, threshold or bistable responses to cell
density. This study serves as an important reminder that
the overall response of a regulatory network depends
critically both on the architecture and on the properties of
the individual components. Interestingly, another study
using different LuxR–LuxI constructs reported bistability in
lux expression due to positive feedback on luxR expres-
sion during autoinduction (Williams et al., 2008). The
discrepancies in the results between the two studies
described above highlight a potential limitation in studying
the LuxR–LuxI module outside of its natural context. Ulti-
mately, the individual needs of each system will drive the
evolution of a regulatory pattern that provides the optimal
function within the biological context of each bacterial
species (Milton, 2006).

A recent study of the V. fischeri LuxR–LuxI system has
revealed that individual cells within a population can
respond differently to a homogeneous concentration of
autoinducer (Perez and Hagen, 2010). An important char-
acteristic of this work was the use of V. fischeri cells,
rather than LuxR–LuxI plasmid constructs in E. coli, as
the basis for the analyses. Performing the analyses within
the system’s native genetic background assures that any
pattern of quorum-signalling activity is the sum of the
multiple, V. fischeri-specific, regulatory inputs discussed
above. While the average luminescence output of a popu-
lation of V. fischeri cells in response to autoinducer
matches that of bulk culture, the associated variation
among the individuals remained large, even at saturating
levels of the autoinducer 3-oxo-C6. Although the biologi-
cal impact of cell-to-cell variation in luminescence is
unclear, this population heterogeneity was also observed
at the level of luxI expression, as measured by fluorescent
reporter constructs. Interestingly, heterogeneity in lumi-
nescence production has also been observed among a
population of V. harveyi cells, which lack the LuxR/LuxI
module (Anetzberger et al., 2009). Such heterogeneity
may arise from the generation of transcriptional noise by

Host responses to V. fischeri QS

The squid–vibrio symbiosis has offered a unique system to
examine the role of bioluminescence, as well as bacterial quorum
sensing, in a natural host environment (McFall-Ngai et al., 2011).
Juvenile squid colonized by strains of V. fischeri containing muta-
tions in luxA, luxI or luxR do not emit detectable levels of lumi-
nescence (Visick et al., 2000). Even in this early study, there was
evidence that the host can sanction dark strains of V. fischeri, as
their corresponding colonization levels have dropped significantly
by 48 h post inoculation. Furthermore, when colonized by these
dark mutants, the epithelial cells of the light organ failed to swell,
which is a normal developmental step during establishment of the
symbiosis (Montgomery and McFall-Ngai, 1994).

More recently, a microarray-based study compared the host
transcriptome of uncolonized light organs with those colonized by
wild type, DluxI or DluxA V. fischeri strains (Chun et al., 2008).
The presence of the bacterial symbionts (wild type, DluxI or
DluxA) was sufficient to activate transcription of immune-related
components, such as LPS-binding protein and PGN-recognition
proteins, as well as of visual transduction cascade proteins, such
as guanylate cyclase. The upregulation of these genes in light
organs colonized by DluxI or DluxA mutants suggests it is the
initial contact between the host and potential symbiont, rather
than quorum sensing or luminescence production, which acti-
vates the developmental pathways that prepare the light organ to
maintain a light-producing bacterial population. Consistent with
the theory that the host can monitor the luminescence output of
the light organ, recent electroretinogram studies have demon-
strated that the light organ, which contains visual transduction
cascade proteins like opsin, arrestin and rhodopsin kinase, does
physiologically respond to light cues (Tong et al., 2009; McFall-
Ngai et al., 2011). Whether signalling outputs of the visual trans-
duction cascade enable the host to specifically sanction (i.e.
eliminate) non-luminous V. fischeri cells awaits further studies.

One luminescence-dependent effect observed in the
microarray-based study described above was higher transcrip-
tional activity of the gene encoding haemocyanin, which is a
cell-free, oxygen-binding protein analogous to haemoglobin
(Chun et al., 2008). An intriguing possibility is that the host uses
haemocyanin to provide oxygen to the light-organ crypts for the
enzymatic activity of luciferase (N. Kremer and M. McFall-Ngai,
pers. comm.). Continued focus on the enzymatic substrates and
products of luciferase within the context of the squid–vibrio sym-
biosis will certainly provide insight into the evolution of host–
microbe interactions.
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the multiple feedback loops present within the V. harveyi
quorum-sensing network (Teng et al., 2011). Whether
such cell–cell heterogeneity in lux gene expression or
luminescence output is relevant in general within natural
environments (e.g. squid light organ) requires further
study.

There has also been recent interest in examining the
impact of multiple types of autoinducer molecules, par-
ticularly the AinS-derived autoinducer C8, on the expres-
sion of the lux genes in V. fischeri. One study provided a
detailed mathematical model that captures the dual func-
tions of C8, namely as a positive regulator of lumines-
cence by interacting with either AinR or LuxR (Kuttler and
Hense, 2008). By adjusting the relative binding affinities
between LuxR and either C8 or 3-oxo-C6, the model can
account for the different luminescence profiles exhibited
by ES114 or MJ1. A different study demonstrated that
individual cells display heterogeneous responses in lux
expression levels regardless of the combined levels of C8
and 3-oxo-C6 (Perez et al., 2011). Together these studies
highlight the complex regulatory network that V. fischeri
uses to control luminescence production.

Conclusions and future directions

Bacterial bioluminescence continues to appeal to the curi-
osity of the scientific community due to its role in different
biological contexts (Fig. 5). The genetic tractability of
V. fischeri, along with its symbiotic relationship with
animal hosts like Euprymna scolopes, has enabled this
bacterium to significantly contribute to our understanding
of fundamental microbiological themes, such as sociomi-
crobiology (Parsek and Greenberg, 2005) and host–

microbe interactions (Ruby, 2008; McFall-Ngai et al.,
2011). As genetic and environmental factors controlling
lux expression are identified, their overall contributions
to bioluminescence must be examined and potentially
refined within the larger regulatory network, thereby
making mathematical modelling an important window
through which to study V. fischeri bioluminescence.
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