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Summary

Bacteria employ a variety of mechanisms to
promote and control colonization of their respective
hosts, including restricting the expression of genes
necessary for colonization to distinct situations (i.e.
encounter with a prospective host). In the symbiosis
between the marine bacterium Vibrio fischeri and its
host squid, Euprymna scolopes, colonization pro-
ceeds via a transient biofilm formed by the bacterium.
The production of this bacterial biofilm depends on a
complex regulatory network that controls transcrip-
tion of the symbiosis polysaccharide (syp) gene
locus. In addition to this transcriptional control,
biofilm formation is regulated by two proteins, SypA
and SypE, which may function in an unusual regula-
tory mechanism known as partner switching. Best
characterized in Bacillus subtilis and other Gram-
positive bacteria, partner switching is a signalling
mechanism that provides dynamic regulatory control
over bacterial gene expression. The involvement of
putative partner-switching components within V. fis-
cheri suggests that tight regulatory control over
biofilm formation may be important for the lifestyle of
this organism.

Introduction

To achieve efficient colonization of their respective hosts,
bacteria have evolved complex signalling networks to
ensure the proper expression of the genes necessary to
respond to the host environment. The result of these
regulatory cascades is the induction of key cellular
responses required for successful host colonization, such
as biofilm formation. Biofilms, or surface-associated com-
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munities of cells encapsulated in a matrix, often play an
integral role in the attachment of bacterial cells to host or
environmental surfaces and in bacterial survival, both
within and outside of a host.

The formation of a biofilm is a common strategy utilized
among numerous Vibrio species, in which it is predicted
to promote bacterial persistence in the environment
and/or colonization of eukaryotic hosts (for a recent
review see Yildiz and Visick, 2009). Vibrio species are
Gram-negative bacteria, typically present in marine envi-
ronments. Among the Vibrios, several species engage in
pathogenic or symbiotic partnerships with specific
eukaryotic hosts. This review focuses on the bacterium
Vibrio fischeri, as recent work has shown a clear rel-
evance of biofilm formation to the ability of this organism
to establish symbiotic colonization of its eukaryotic host,
the Hawaiian bobtail squid Euprymna scolopes. Biofilm
formation by V. fischeri requires expression of a cluster of
polysaccharide biosynthetic genes, termed the symbiosis
polysaccharide (syp) locus, that is conserved among
several Vibrio species (Yip etal., 2005; 2006). Impor-
tantly, the regulation of this polysaccharide locus involves
an intricate network of regulatory proteins, which is pre-
dicted to restrict biofilm formation such that it occurs
transiently in response to specific host-derived signals
(Visick, 2009).

Biofilm formation also appears to be regulated by
two largely uncharacterized regulatory proteins encoded
within the syp cluster, SypA and SypE. Bioinformatic
analyses of these regulatory proteins suggest they
contain elements of a regulatory signalling mechanism,
termed partner switching. A signalling mechanism most
extensively characterized in Gram-positive bacteria,
partner switching provides yet another layer of regulatory
control over gene expression. In recent years, genome
analyses have suggested that potential partner-switching
components are present in a wide range of bacteria,
including Gram-negative species (Mittenhuber, 2002;
Mattoo et al., 2004). Here, following brief overviews of
the V. fischeri-squid symbiosis and biofilm formation, we
review the partner-switching mechanism, as understood
within characterized models, then speculate on the role of
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this signalling mechanism in the regulation of biofilms by
V. fischeri, and potentially, other Vibrio species.

Vibrio fischeri and E. scolopes: symbiotic initiation
depends on biofilm formation

The symbiotic relationship between the marine bacterium
V. fischeri and its eukaryotic host, E. scolopes, provides
an elegant model of symbiotic bacteria—host interaction
(for recent reviews, see Nyholm and McFall-Ngai, 2004;
Stabb, 2006; Visick and Ruby, 2006). Newly hatched juve-
nile squid are aposymbiotic and must acquire their bacte-
rial symbionts from the surrounding seawater. Successful
establishment of this symbiotic colonization involves a
number of both host- and symbiont-derived responses
(Nyholm and McFall-Ngai, 2004). Importantly for this
review, exposure to environmental bacteria stimulates
newly hatched squid to secrete mucus onto the surface of
their symbiotic light organs (Nyholm et al., 2000; Nyholm
and McFall-Ngai, 2004). Vibrio fischeri appears particu-
larly adept at adhering to the mucus and forming a biofilm-
like aggregate of cells that are poised to enter the light
organ (Nyholm and McFall-Ngai, 2003). Subsequently, V.
fischeri, but not other bacteria, productively enter and
migrate to the crypts, where they establish colonization by
multiplying to high cell density.

The formation of a biofilm aggregate outside the squid
light organ is essential for efficient initiation of host colo-
nization. Mutants defective in biofilm formation exhibit a
significant defect in colonization, while a strain with an
enhanced ability to form biofilms exhibits a significant
colonization advantage (Yip et al., 2005; 2006). Formation
of this biofilm requires the syp locus, consisting of 18
genes predicted to be involved in the synthesis and regu-
lation of a polysaccharide biofilm matrix (Yip et al., 2005;
2006). syp mutants exhibit a significant defect in biofilm
formation and host colonization (Yip et al., 2005).

Regulation of biofilm formation: a complex network
of regulators

Biofilm formation appears to be under complex regulatory
controls. At least four regulators encoded within the syp
locus (SypA/E/F/G) and two regulators encoded else-
where (RscS and VpsR) appear to regulate biofilms at the
level of syp transcription or at an unknown level beyond
syp activation (recently reviewed in Visick, 2009). Tran-
scription of the syp locus is controlled by the response
regulator SypG, which is predicted to be activated via
phosphotransfer from an upstream sensor kinase, RscS
(Fig. 1) (Hussa etal.,, 2008). Overexpression of either
rscS or sypG promotes substantial biofilm formation, and
loss of either gene results in a severe colonization defect
similar to syp mutants (Visick and Skoufos, 2001; Yip

Biofilm
Formation

Fig. 1. Model of biofilm formation in V. fischeri. The symbiosis
polysaccharide (sypA-R) locus is regulated at the transcriptional
level via a two-component regulatory cascade consisting of the
sensor kinase, RscS, and the downstream response regulator,
SypG. The regulatory proteins, SypA and SypE, exhibit antagonistic
regulatory roles, promoting and inhibiting syp-dependent biofilms
respectively. These regulators control biofilm formation via an
unknown mechanism that appears to function downstream of syp
transcription. Biofilms are represented by the formation of a
wrinkled bacterial colony (Yildiz and Visick, 2009).

etal,, 2006; Hussa et al., 2007). Two other regulators,
the sensor kinase SypF and the response regulator VpsR
(a predicted DNA-binding protein), also appear to regulate
biofilm formation, but it remains unknown how these pro-
teins contribute to the regulatory network (Darnell et al.,
2008).

SypA and SypE also contribute to control of biofilm
formation, but appear to exert their effects downstream of
syp transcription (Hussa et al., 2008; A.R. Morris and K.L.
Visick, unpubl. data). Current unpublished data indicate
the SypA is required for biofilm formation by V. fischeri
(S. Shibata, E.S. Yip and K.L. Visick, unpubl. data).
Sequence analysis indicates that sypA codes for a single-
domain protein with a predicted sulfate transporter and
anti-sigma factor antagonist (STAS) domain (Fig. 2). This
domain is conserved among anti-anti-sigma factors,
which generally function as positive regulators (Aravind
and Koonin, 2000).

In contrast to SypA, SypE appears to play a dual role
in biofilm formation. SypE inhibits SypG-induced biofilm
formation, but is required for full biofilm induction
under conditions in which the sensor kinase, RscS, is
overexpressed (Hussa etal, 2008). Sequence and
domain analysis of SypE suggests a unique multi-domain
protein. Due to the presence of a conserved receiver
(REC) domain, SypE is a predicted response regulator.
The activity of response regulators is generally controlled
via the phosphorylation of a conserved aspartate
residue within the REC domain (Stock et al., 2000). The
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Fig. 2. SypA domain structure and multiple sequence alignment.
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A. Domain structure of SypA. SypA contains the conserved anti-sigma factor antagonist and sulfate transporter (STAS) domain present in
anti-anti-sigma factors. The conserved regulatory serine residue (S56) is indicated.

B. BLAST multiple sequence alignment (Altschul et al., 1997) and identification of conserved residues within V. fischeri SypA and the
anti-anti-sigma factors RsbV and SpollAA of B. subtilis and BtrV of B. bronchiseptica. Serine 56 of RsbV, serine 58 of SpollAA and serine 59
of BtrU are the phosphorylation targets of the respective serine kinases (Najafi et al., 1995; Yang et al., 1996). This serine residue, indicated
by an S, is conserved in SypA (S56). Highlighting of the conserved identical residues (black boxes) and conserved substitutions (grey boxes)

was generated using BOXSHADE server.

phosphorylation state of the REC domain activates an
effector domain within the response regulator that results
in a response, usually a change in gene transcription
(Stock et al., 2000). Distinct from the typical response
regulator, which contains the REC domain in the
N-terminus, SypE contains a central REC domain
(Fig. 3A). This central REC domain is flanked by two
domains of putative opposing functions. The N-terminal
domain of SypE exhibits weak sequence similarity to
serine kinases of the GHKL (gyrase, Hsp90, histidine
kinase and MutL) family, which includes SpollAB of
Bacillus subtilis (Dutta and Inouye, 2000) (Fig. 3B).
The C-terminus of the protein contains a putative serine/
threonine phosphatase domain and exhibits strong
sequence similarity to the PP2C family of serine phos-
phatases (Fig. 3C).

How these proteins contribute to the biofilm regulatory
network remains an area of active research. Although the
roles of SypA and SypE in the regulation of biofilm forma-
tion remain unknown, bioinformatics suggest that these
proteins may constitute a novel partner-switching system.

The partner-switching system

First coined by Alper and colleagues (1994), the term
‘partner switch’ describes a network of interacting proteins
whose interaction with cognate ‘partners’ depends upon a
reversible phosphorylation event. Dependent upon which
partner proteins interact, the outcome of this partner
switching can either negatively or positively regulate a
target protein, generally a transcription factor or enzyme.
Specifically, the partner-switching mechanism depends
upon key regulatory elements, including a serine kinase/

anti-sigma factor, a serine phosphatase, an antagonist
protein/anti-anti-sigma factor and a target protein (often a
sigma factor) (Yang et al., 1996).

The partner-switching mechanism has been best
characterized in the Gram-positive bacterium B. subtilis.
In B. subtilis and other Gram-positive bacteria, partner-
switching systems contribute to the signalling networks
that control the activity of sigma factors, the subunit of
RNA polymerase that provides promoter specificity.
For example, B. subtilis uses partner switching to
control the activity of the sigma factor, sigma B, which
regulates the general stress response pathway (Dufour
and Haldenwang, 1994). In this system, the anti-sigma
factor RsbW negatively regulates the activity of sigma B
by directly binding it and preventing interaction with the
RNA polymerase core (Dufour and Haldenwang, 1994;
Hughes and Mathee, 1998) (Fig. 4A). The binding of an
anti-anti-sigma factor, RsbV, to RsbW relieves this nega-
tive regulation by sequestering the anti-sigma factor
(Dufour and Haldenwang, 1994). This releases sigma B,
which can now bind to the RNA polymerase core and
promote transcription of sigma B-dependent genes. This
results in the induction of proteins involved in protection
against multiple bacterial stresses (Yang etal., 1996;
Price et al., 2001).

Activity of the anti-anti-sigma factor RsbV is controlled
via phosphorylation of a conserved serine residue within
the STAS domain (Figs 2B and 4A). In the unphosphory-
lated state, RsbV can bind and inactivate the anti-sigma
RsbW, thus freeing sigma B and upregulating sigma
B-dependent genes. However, when this serine residue
becomes phosphorylated, RsbV is rendered unable to
bind RsbW, which permits RsbW to sequester sigma B
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Fig. 3. SypE domain structure and multiple sequence alignment.
A. Domain structure of SypE. SypE is a multi-domain protein that contains

a central response regulator (REC) domain flanked by an

N-terminal serine kinase (RsbW) domain and a C-terminal serine phosphatase (PP2C) domain. The N-terminal RsbW domain of SypE
contains the conserved N-, G1- and G2-boxes important in anti-sigma factor activity, which are indicated by black, grey and striped boxes
respectively. The conserved residues within the N-terminal RsbW and C-terminal PP2C domains, predicted to be important for serine kinase

or serine phosphatase activity, are shown.

B. BLAST multiple sequence alignment (Altschul et al., 1997) of the N-terminal serine kinase domain of SypE with the anti-sigma factors RsbW
and SpollAB of B. subtilis and BtrW of B. bronchiseptica. The conserved N-, G1- and G2-boxes are outlined, and the conserved residues
required for serine kinase activity are indicated in bold letters above the alignments (Dutta and Inouye, 2000). The SypE serine kinase domain

contains the conserved N-box asparagine (N52) and the G1-box aspartate

and glycine residues (D81 and G83).

C. BLAST multiple sequence alignment of the C-terminal serine phosphatase domain of SypE with the serine phosphatases RsbU and SpollE
of B. subtilis and BtrU of B. bronchiseptica. The labelled amino acids indicate the conserved residues required for serine phosphatase activity
(Adler et al., 1997). SypE contains the invariant aspartate residues (D443 and D495) predicted to be important in divalent cation binding.

For (B) and (C), highlighting of the conserved residues (black boxes) and conserved substitutions (grey boxes) was generated using

BOXSHADE server.

and downregulate sigma B-dependent gene expression.
The phosphorylation state of this serine residue is con-
trolled by two sets of proteins, one of which is RsbW itself;
in addition to its role in sequestering sigma B, RsbW also
functions as a serine kinase. Dephosphorylation of this
residue is carried out by the serine phosphatases, RsbU
and RsbP, which are activated by environmental and
energy stress signals respectively (Voelker et al., 1996).
Thus, in this regulatory network, RsbW functions as a
regulatory switch, as it reversibly interacts with its cognate

sigma factor and anti-anti-sigma factor. Furthermore, the
partner switch is regulated by reversible phosphorylation
of RsbV.

Conservation of partner switching:
a Gram-positive mechanism?

Since its characterization in B. subtilis, the partner-
switching mechanism has been identified as a signalling
component in a wide range of Gram-positive bacteria.

© 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 12, 2051-2059
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A. A model of the B. subtilis partner-switching regulatory pathway controlling the activity of the general stress response sigma factor, sigma B.

See text for detailed description of the model.

B. A model of the predicted SypA—-SypE partner-switching module controlling biofilm formation. SypA and SypE possess the core components
of a putative partner-switching signal pathway. The proposed model is constructed from information of the conserved protein domains and

current data of biofilm regulation.

These include Bacillus cereus (van Schaik et al., 2005),
Bacillus anthracis (Fouet etal., 2000), Mycobacterium
tuberculosis (Beaucher etal., 2002), Staphylococcus
aureus (Miyazaki et al., 1999) and Listeria monocytoge-
nes (Chaturongakul and Boor, 2004; 2006). In these bac-
terial systems, partner-switching modules are utilized in a
manner similar to that observed in B. subtilis: primarily, the
regulation of sigma factor activity. However, the output of
these modules varies among the individual bacteria.
Partner-switching modules have been demonstrated
to contribute to the regulation of the general stress
response of L. monocytogenes and many other bacteria
(Chaturongakul and Boor, 2004), biofilm formation in
Staphylococcus epidermidis (Knobloch etal.,, 2004),
and the expression of virulence-associated genes in
M. tuberculosis (Beaucher et al., 2002; Manganelli et al.,
2004). Additionally, bacteria may possess multiple
partner-switching pathways regulating distinct sets of
target proteins. For example, in addition to the RsbU/V/W
module that regulates the general stress response, B.
subtilis possesses a second set of partner-switching
regulators, SpollAA/SpollAB/SpollE. Similar to the sigma
B regulatory pathway, these partner-switching proteins
control the activity of a sigma, in this case sigma F, which
regulates sporulation (Magnin et al., 1997). The partner-
switching mechanism, while similar among diverse Gram-

© 2010 Society for Applied Microbiology and Blackwell Publishing Ltd,

positives, has been adapted to respond to specific stimuli
and regulate distinct cellular responses.

Partner switching within the Gram-negatives?

Analyses of diverse bacterial genomes suggest that
partner-switching orthologues may exist in a wide range
of eubacteria (Mittenhuber, 2002; Mattoo et al., 2004).
Despite its predicted widespread distribution, partner
switching has remained relatively uncharacterized
within Gram-negative bacteria. Indeed, partner-switching
systems have been characterized in only two Gram-
negative bacteria, Bordetella bronchiseptica and Chlamy-
dia trachomatis (Kozak et al., 2005; Hua et al., 2006).
Furthermore, only in the case of B. bronchiseptica has a
partner-switching module been experimentally demon-
strated to regulate a physiological response. This respira-
tory pathogen utilizes a partner-switching module to
control production of a type Il secretion system (T3SS)
(Mattoo et al., 2004). The T3SS consists of a needle-like
secretory apparatus that directly transports virulence pro-
teins into the cytoplasm of host cells. In B. bronchiseptica,
the T3SS contributes to persistent colonization of the host
trachea and the avoidance of the host immune response
(Yuk et al., 2000; Mattoo et al., 2001). The production of
the T3SS requires transcription of a gene cluster, the bsc

Environmental Microbiology, 12, 2051-2059
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locus, which encodes multiple components of the secre-
tory system (Mattoo et al., 2001). Regulation of the T3SS
depends upon a set of genes adjacent to the bsc cluster,
the bir locus, which encode orthologues of the B. subtilis
RsbU/V/W partner-switching proteins, BtrU/BrtV/BtrW.
In vitro and in vivo analyses of the B. bronchiseptica
proteins demonstrated that they constitute a regulatory
network similar to their B. subtilis counterparts (Kozak
etal., 2005). However, this partner-switching system
appears to deviate from that of the B. subtilis RsbU/V/W
paradigm. First, disruption of any component of the BtrU/
V/W partner-switching module results in the loss of type IlI
secretion (Mattoo et al., 2004), a result that is inconsistent
with the B. subtilis model (Fig. 4A). Second, positive regu-
lation of the T3SS requires both the formation of the
BtrV/BtrW complex and its dissociation, via phosphoryla-
tion of BtrV by BtrW (Kozak et al., 2005). Finally, although
the BtrU/V/W module regulates type Il secretion, it
does not appear to control transcription of the bsc locus
(Kozak etal,, 2005). Instead, Kozak and colleagues
(2005) suggest that these partner-switching proteins may
regulate the T3SS at the posttranscriptional level possibly
by interacting with yet unknown regulatory proteins or
playing a structural role in the secretory pathway. Thus,
although there is conservation of the partner-switching
components, the regulatory mechanism appears to vary
from that of the Gram-positive paradigm.

Genome analysis of the obligate intracellular pathogen
C. trachomatis identified several components of a putative
partner-switching module (Hua et al., 2006). In vitro analy-
sis of the candidate genes demonstrated that these pro-
teins could interact. As with B. bronchiseptica, it appears
that the C. trachomatis partner-switching system may vary
from the B. subtilis paradigm, as in vitro binding assays
failed to demonstrate an interaction with any of the three
sigma factors encoded in the C. trachomatis genome
(Hua et al., 2006). However, the lack of genetic tools and
difficulty in culturing C. trachomatis have delayed analysis
of this potential partner-switching module in vivo.

Together, these studies suggest that the partner-
switching mechanism, previously observed only among
the Gram-positives, also contributes to regulatory control
in Gram-negative bacteria. It remains unknown how these
Gram-negative partner-switching proteins regulate down-
stream targets. Furthermore, it remains unclear how wide-
spread this regulatory mechanism is among Gram-
negative bacteria.

SypA and SypE: a potential partner-switching
module in V. fischeri?

Several lines of evidence suggest that SypA and SypE
may represent a partner-switching module in the Gram-
negative bacterium V. fischeri. First, the physical proximity

of the sypA and sypE genes and their known roles
in biofilm formation suggest a regulatory connection.
Second, searches for V. fischeri proteins with sequence
similarity to the RsbU/V/W of B. subtilis, and other ortho-
logues, yielded only two candidate proteins, SypA and
SypE. Third, these proteins not only contain the con-
served domains, but also critical active-site residues
within these domains.

Specifically, SypA not only contains the conserved
STAS domain present among RsbV-like anti-anti-sigma
factors, but also retains the conserved serine residue
(S56) predicted to be the site of phosphorylation (Fig. 2B).
Our preliminary data are consistent with a role for this
residue in SypA function (A.R. Morris and K.L. Visick,
unpublished). SypE contains two partner-switching
domains: an N-terminal serine kinase (RsbW) and a
C-terminal serine phosphatase (PP2C) domain. As shown
in Fig. 3B, sequence alignment of the N-terminal domain
of SypE with RsbW orthologues indicates that SypE con-
tains the conserved N-, G1- and G2-boxes present in the
Bergerat ATP-binding fold of serine kinases (Dutta and
Inouye, 2000). Importantly, SypE possesses the invariant
asparagine residue (N52) of the N-box, which is required
for Mg?* ion chelation and coordinates binding of ATP to
the nucleotide pocket (Fig. 3B) (Dutta and Inouye, 2000).
Sequence alignment also reveals the conserved G1-box
aspartate and glycine residues (D81 and G83), predicted
to participate in ATP binding and formation of the ATP lid
of the nucleotide binding pocket respectively (Dutta and
Inouye, 2000). The conservation of these key residues
suggests that, despite poor overall sequence similarity,
the N-terminus of SypE may function as an RsbW-like
serine kinase. The C-terminus of SypE possesses strong
sequence similarity to serine/threonine phosphatases of
the PP2C family, including RsbU. As shown in Fig. 3C, the
C-terminal domain of SypE also possesses the invariant
aspartate residues (D306, D323, D443 and D495) that
form part of the catalytic core and are predicted to coor-
dinate binding of Mg?/Mn2* ions necessary for PP2C
catalytic activity (Adler et al., 1997; Rantanen et al., 2007;
Shi, 2009).

The antagonistic domains within SypE suggest that
this protein may possess both negative and positive
regulatory activity, depending on which domain is active
(Fig. 4B). Studies of syp-dependent biofilms support this
hypothesis: SypE inhibits SypG-induced biofilms, but is
required for full expression of biofilms produced by over-
expression of the sensor kinase, RscS (Hussa etal.,
2008). Furthermore, recent genetic analyses indicate that
the antagonistic domains of SypE may be responsible for
these apparent dual regulatory activities (A.R. Morris and
K.L. Visick, unpubl. data).

Based on bioinformatics and experimental observa-
tions, we propose a model in which SypE and SypA

© 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 12, 2051-2059



constitute part of a partner-switching module (Fig. 4B).
In partner-switching systems, RsbW-like serine kinases
generally function as antagonists, and inhibit cellular
responses via the binding to cognate partner proteins.
Thus, potentially the N-terminal (RsbW) domain of SypE
regulates biofilm formation by interacting with SypA or a
yet unknown regulatory protein. These interactions are
possibly dictated by the phosphorylation state of SypA,
which may be controlled by the serine kinase and/or the
serine phosphatase domains of SypE. The phosphoryla-
tion state of the central REC domain may regulate
whether SypE functions as a serine kinase or a serine
phosphatase. The outcome of this partner-switching
network is either the negative or the positive regulation of
biofilm formation. Work is currently in progress to assess
whether these components indeed function as predicted
by this model.

Conservation of SypA and SypE among
Vibrio species

The syp locus is relatively conserved among several
Vibrio species, including both pathogenic and symbiotic
bacteria. Although biofilm formation has been investigated
in diverse Vibrio species, the role of the syp cluster in
species other than V. fischeri is not fully understood.
Recently, Kim and colleagues (2009) demonstrated that
the syp locus plays a role in biofilms formed by the patho-
genic bacterium Vibrio vulnificus. Specifically, the syp
cluster contributes to the production of exopolysaccha-
rides and bacterial attachment to biotic and abiotic sur-
faces (Kim et al., 2009). Due to the conservation of the
syp locus among Vibrio species, we performed a bioinfor-
matic survey of syp-containing Vibrio genomes for SypA
and SypE, specifically, or other potential partner-switching
proteins. Interestingly, SypA is well conserved among the
syp-containing Vibrio genomes, but SypE appears to be
absent in several species. For example, V. vulnificus pos-
sesses a SypA orthologue, but lacks any clear SypE-like
genes. Intriguingly, the genome of V. vulnificus contains
RsbW- and RsbU-like proteins, VVA0582 and VVA1682,
which encode a putative RsbW-like anti-sigma factor
and an RsbU-like serine phosphatase respectively. The
genomes of Vibrio parahaemolyticus and Aliivibrio salmo-
nicida similarly lack SypE, but encode RsbW and RsbU-
like proteins elsewhere. Thus, in several Vibrio species
lacking SypE, other putative partner-switching compo-
nents exist; whether or not they function as predicted or
control the activity of SypA remains to be determined.

Concluding remarks

The symbiotic bacterium V. fischeri employs a variety of
regulatory proteins to control biofilm formation and con-
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sequently host colonization. While much of the regulation
occurs via canonical two-component signalling pathways
that control syp transcription, it remains unknown how the
syp-encoded regulators SypA and SypE control biofilm
formation. Bioinformatics suggest the possibility that
SypA and SypE participate in a partner-switching mecha-
nism. However, the downstream target of this potential
control mechanism remains unknown. In contrast to the
well-established Gram-positive partner-switching para-
digms, studies from other Gram-negative bacteria
suggest that the downstream target may not necessarily
be a sigma factor.

The potential integration of partner-switching compo-
nents within the V. fischeri biofilm regulatory network
would provide yet another layer of signal control.
Together, these mechanisms may confine expression of
colonization genes to defined conditions (i.e. interaction
with juvenile host squid) and/or control the timing of the
transient biofilm formation, thus permitting cells to leave
the biofilm to enter the symbiotic organ. The presence of
the syp locus within multiple Vibrio species exhibiting
varied lifestyles (pathogens versus symbionts) suggests
that syp-dependent biofilms may play a role in diverse
responses, such as the colonization of respective hosts.
The elucidation of the roles of SypA and SypE and the
signals to which they respond in V. fischeri thus has the
potential to provide a paradigm for understanding partner
switching in Vibrios and other Gram-negatives.
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