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The cold-water-fish pathogen Vibrio salmonicida expresses a functional bacterial luciferase but produces
insufficient levels of its aliphatic-aldehyde substrate to be detectably luminous in culture. Our goals were to (i)
better explain this cryptic bioluminescence phenotype through molecular characterization of the lux operon
and (ii) test whether the bioluminescence gene cluster is associated with virulence. Cloning and sequencing of
the V. salmonicida lux operon revealed that homologs of all of the genes required for luminescence are present:
luxAB (luciferase) and luxCDE (aliphatic-aldehyde synthesis). The arrangement and sequence of these struc-
tural lux genes are conserved compared to those in related species of luminous bacteria. However, V. salmo-
nicida strains have a novel arrangement and number of homologs of the luxR and luxI quorum-sensing
regulatory genes. Reverse transcriptase PCR analysis suggests that this novel arrangement of quorum-sensing
genes generates antisense transcripts that may be responsible for the reduced production of bioluminescence.
In addition, infection with a strain in which the luxA gene was mutated resulted in a marked delay in mortality
among Atlantic salmon relative to infection with the wild-type parent in single-strain challenge experiments.
In mixed-strain competition between the luxA mutant and the wild type, the mutant was attenuated up to
50-fold. It remains unclear whether the attenuation results from a direct loss of luciferase or a polar
disturbance elsewhere in the lux operon. Nevertheless, these findings document for the first time an association
between a mutation in a structural lux gene and virulence, as well as provide a new molecular system to study
Vibrio pathogenesis in a natural host.

Marine bioluminescent bacteria have been the subjects of
considerable interest because of the biochemistry that drives
light production and their ability to initiate specific, long-term
cooperative symbioses with many species of squids and fishes
(20, 35, 45, 51). Less is known about bioluminescence in spe-
cies of bacteria that have the capacity to produce light yet are
found in pathogenic associations with animal hosts (32, 33, 38).
It has always been of interest to know whether luminescence
plays a role in the biology of such pathogens, either to colonize
the hosts or to grow in environmental niches. However, at-
tempts to address such questions were limited because a model
system in which to study the relationship between biolumines-
cence and pathogenesis was not available.

In the five previously characterized species of luminous bac-
teria (Vibrio fischeri, Vibrio harveyi, Photobacterium leiognathi,
Photobacterium phosphoreum, and Photorhabdus luminescens),
the six structural genes for bioluminescence are contained
within a locus termed the lux operon. With the exception of a
duplication of luxB (designated luxF) in one species, these
genes are arranged in the order luxCDABEG (1, 9, 16, 28).
luxA and luxB, respectively, encode the alpha and beta subunits
of luciferase, the enzyme responsible for luminescence. luxC,

luxD, and luxE each encode an enzyme required for the syn-
thesis of an aliphatic-aldehyde substrate. luxG is not essential
for luminescence but is believed to increase the capacity of the
cell to synthesize flavin mononucleotide (FMN) (42). In the
luminescence reaction, luciferase converts this aliphatic-alde-
hyde substrate, oxygen, and reduced FMN (FMNH2) into the
corresponding aliphatic acid, water, and FMN, with the con-
comitant production of light (19, 28). In the absence of the
aldehyde substrate, luciferase catalyzes a reaction that yields no
light and produces oxygen radicals rather than water (15, 18).

Bacteria that carry the genes for luciferase yet do not pro-
duce a detectable level of light in culture have been referred to
as cryptically bioluminescent (13), and this phenotype may be
quite widespread in the environment (14, 33, 34). Cryptic bio-
luminescence has been best characterized with the psychro-
philic fish pathogen Vibrio salmonicida (13), the only bacterium
known to cause vibriosis in cold-water, farmed Atlantic salmon
(Salmo salar L.), as well as rainbow trout and cod (10, 11).

Cultures of V. salmonicida become visibly luminous only
upon the addition of aliphatic aldehyde (an aldehyde group
attached to a linear saturated carbon chain) and induce the
synthesis of luciferase 10-fold per cell as they approach sta-
tionary phase (13). Similarly, when exposed to N-3-oxo-
hexanoyl homoserine lactone, the signal molecule that is in
part responsible for quorum sensing and the induction of lu-
minescence in V. fischeri (30, 32), V. salmonicida induces lu-
ciferase production 100-fold. Thus, the regulation of the lucif-
erase in V. salmonicida, like that in its close congener V. fischeri
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(50), appears to be under the control of a quorum-sensing
autoinducer mechanism. Despite these similarities, quorum-
sensing regulation of the lux operon in V. fischeri strain MJ1 is
responsible for a 10,000-fold increase in light production per
cell (31), which is substantially greater than the 10-fold in-
crease in V. salmonicida. Further, unlike that of V. salmonicida,
the luciferase reaction of V. fischeri MJ1 is not limited by the
absence of aliphatic aldehyde (31).

To examine the genetic basis for its aliphatic-aldehyde de-
ficiency and low levels of autoinduction, the luminescence gene
cluster of V. salmonicida was cloned and sequenced. The ar-
rangement and sequence of the structural lux genes are con-
served compared to those in related species of luminous bac-
teria; however, V. salmonicida has both a novel arrangement
and a different number of homologs of the luxR and luxI quo-
rum-sensing regulatory genes. Transcriptional analysis sug-
gested that this novel arrangement generates antisense tran-
scripts that may be responsible for the reduced production of
bioluminescence. Further, mutagenesis of V. salmonicida luxA
resulted in marked attenuation of virulence of the mutant
relative to that of the wild type in both single- and mixed-strain
animal challenge experiments.

MATERIALS AND METHODS

Bacterial strains, media, and culture conditions. The bacterial strains used in
this study are listed in Table 1. Escherichia coli DH5�, grown in Luria-Bertani
(LB) medium (37) at 37°C, was the host for plasmids with ColE1 or pACYC184
origins of replication. When added to LB medium for the selection of E. coli cells
carrying a plasmid, ampicillin, chloramphenicol (Cam), and kanamycin (Kan)
were used at concentrations of 100, 30, and 50 �g/ml, respectively. V. salmonicida
strains were originally isolated from diseased Atlantic salmon (8, 39). Unless
indicated otherwise, the principal strain used in this study was V. salmonicida
NCMB 2262T. V. salmonicida cultures were grown at 15°C with shaking at 150
rpm for 2 to 3 days in a complex broth (SWT) that contained 10 g of tryptone,
3 g of yeast extract, and 3 ml of glycerol per liter of 70% seawater (2). SWT blood
agar contained, per liter of SWT broth, 15 g of agar and 50 ml of Alsevers sheep
blood (Colorado Serum Co., Denver, CO). When added to SWT for the selection
of V. salmonicida cells carrying a plasmid, Cam and Kan were used at 2 and 150
�g/ml, respectively.

Triparental mating for V. salmonicida. We developed a version of the tripa-
rental mating procedure described by Valla et al. (44), adjusted for the differ-
ences in the optimal growth temperatures of E. coli and V. salmonicida (8). The
transfer of plasmids to V. salmonicida was performed using pEVS104 as a helper

plasmid (40) contained in E. coli DH5�. E. coli and V. salmonicida strains were
grown to an optical density (OD) at 600 nm of between 0.5 and 0.8 in LB (37°C)
and SWT (15°C) broths, respectively. The cells in 1 ml of each culture were
pelleted, washed three times in chilled (4°C) SWT, and resuspended in 5 �l of
chilled SWT. The resuspended cells were combined, spotted onto a chilled SWT
plate, and placed in a 23°C incubator for 6 h. The plate was subsequently
incubated at 15°C for another 12 h. The resulting confluent growth of cells was
scraped off the plate, resuspended in 1 ml of chilled SWT broth, and incubated
with shaking at 150 rpm for 12 h at 15°C. Following the incubation, the suspen-
sion was plated onto antibiotic-containing SWT blood agar plates. After 10 days
of growth, colonies of V. salmonicida transconjugates were streaked for purifi-
cation.

Molecular manipulation of the lux region. (i) Cloning and sequencing of the
lux gene cluster. Using standard PCR methods with consensus primers for the
luxAB region (forward, O-LUXDFP2 [5�-CATGTCATTCGCTA-3�], and re-
verse, [O-LUXDRP1 5�-AGATAAGATCATCA-3�]), we generated a PCR
product that was cloned into the TA cloning vector (Invitrogen, Carlsbad, CA)
to make the luxAB plasmid pEN115 (Table 1). A Southern probe analysis based
on the internal luxAB sequence in pEN115 was used to screen a library of SalI
genomic fragments of V. salmonicida cloned into the vector pEVS79 for luxAB-
positive clones. One such clone, pEN114, was isolated and sequenced. Because
pEN114 lacked the region upstream of luxC, we subcloned the luxAB fragment
from pEN114 into pEVS79 to make pEN123 and marked luxAB by using the in
vitro EZ::TN �KAN-2� insertion kit (Epicenter Technologies Inc., Madison,
WI) to generate pEN124. pEN124 contained a transposon (Kanr) insertion near
the middle of the luxAB fragment (886 bp into the luxA open reading frame
[ORF]); this transposon has transcriptional terminators at each end. The marked
copy of luxAB was introduced into the genome of V. salmonicida by triparental
mating, and the single recombinant, EN3, was selected by sequentially patching
colonies onto SWT-Kan, SWT-Cam, and nonselective SWT blood plates.
Genomic DNA from EN3 was purified; digested with SacI, which cuts upstream
of luxC; and ligated into the SacI site in pEVS79. A Kan-resistant clone harbor-
ing a pEVS79 derivative containing the marked copy of luxAB was found to
contain a small portion of the genomic sequence upstream of luxC. Primers were
designed from this upstream sequence and used to rescreen the V. salmonicida
SalI library by PCR, resulting in the identification of the plasmid pEN133. The
plasmid pEN133 was found to contain a large region immediately upstream of
luxC, adjacent to the SalI fragment cloned into pEN114. pEN133 was sequenced
by standard methods.

(ii) Screening for a double-recombinant luxA mutant. Strain EN3 (Cam and
Kan resistant) was grown without Cam selection in SWT. Approximately 10,000
colonies from this culture were screened (Cam sensitive, Kan resistant) for the
loss of the integrated pEN124 plasmid by double recombination. Subsequent
clones were screened by PCR for the integration of the Kanr marker. The
resulting clone, EN4, was examined by sequencing and Southern blot analysis to
confirm that a single integration of the Kan resistance marker had occurred in luxA.

(iii) Complementing the luxA mutation. pEN114 was digested with BamHI,
and the luxDABEG fragment was cloned into the BamHI site of pV08. The

TABLE 1. Bacterial strains and plasmids

Strain or plasmid Relevant characteristicsa Reference

Bacterial strains
NCMB 2262 V. salmonicida type strain isolated from diseased salmon 8
EN3 luxA insertion mutant containing pEN124 chromosomally integrated into NCMB 2262 (Camr Kanr) This study
EN4 luxA insertion mutant derived from EN3 (Kanr) This study

Plasmids
pEVS79 Derivative of pBS SK� (Stratagene Inc.) (mob site; ColE1 ori) 40
pEVS104 Helper plasmid with tra and trb genes (Camr) 40
pVO8 Vector plasmid with pACYC184 ori (Camr Ermr) 47
pKV17 Derivative of pHV200 (16); 7.9-kbp SalI fragment encoding the V. fischeri ES114 lux region (�luxA) 45
pEN114 10.8-kbp SalI fragment with a portion of the V. salmonicida lux operon ligated into pEVS79 This study
pEN115 V. salmonicida luxAB PCR product ligated into pCR2.1 (Invitrogen Inc.) This study
pEN123 V. salmonicida luxAB PCR product ligated into pEVS79 This study
pEN124 pEN123 with a transposon (Kanr) inserted 987 bp downstream of the start of the V. salmonicida luxA ORF This study
pEN133 SalI fragment with V. salmonicida lux sequence 5� to luxC ligated into pEVS79 This study
pEN134 BamHI fragment from pEN114 (luxDABEG) ligated into pV08 This study
pEN135 V. fischeri ES114 luxCDBEG (�luxA) from pHV200 in frame with the lacZ promoter on pVO8 This study

a Camr, chloramphenicol resistance; Ermr, erythromycin resistance; Kanr, kanamycin resistance.
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resulting plasmid (pEN134) and the parent vector were separately moved into
the luxA mutant EN4 and the wild-type parent by triparental mating.

DNA sequence analysis of lux regions. Stem-loop structures in lux gene clusters
of several bacterial species were identified using DNA Strider V1.2. The Gibbs
free-energy (�G) value for each stem-loop was calculated in units of kilocalories
per mole by using the program Mfold (GCG, Madison, WI). �G values were
calculated for the optimal growth temperatures for the following bacterial spe-
cies: V. salmonicida (15°C), V. fischeri MJ1 (30°C), V. harveyi (35°C), and P.
leiognathi (35°C).

PCR analysis of the lux region arrangement in five V. salmonicida strains. PCR
was used to putatively identify and map the luxR1, luxR2, and luxI regions (Fig.
1) of V. salmonicida strains isolated from independent sources (Table 1). PCRs
were performed with genomic DNA by using the primer pairs O-EN11 (5�-GC
CAGATCAAATGTTTGCTG-3�) and O-EN20 (5�-GTCACTTGGCTACCGC
TCG-3�); O-EN26 (5�-TAAATGAGTTGAGCCACG-3�) and O-EN23 (5�-CTC
CATCGCTGTCCAACCG-3�); and O-PEN115M13R1F1 (5�-GTAAATACAT
GAATGAGC-3�) and O-EN14 (5�-CCAAAATACTCCATTGCGAG-3�).
These three primer pairs spanned the regions between luxR1 and luxC, luxE and
luxR2, and luxR2 and ribG, respectively.

Genetic complementation of the aldehyde deficiency. A derivative of V. sal-
monicida NCMB 2262T that harbored pEN135, which constitutively expressed
the V. fischeri ES114 aliphatic-aldehyde synthesis (AAS) genes, luxCDE, was
constructed. To construct the plasmid pEN135, the V. fischeri lux gene region
containing luxRICDBEG (luxA was previously deleted) was excised from pKV17
(45) by using SalI and ligated into the V. fischeri cloning vector pVO8 (47). The
luxR and luxI genes were removed from the resulting plasmid by KpnI and BglII
double digestion, followed by ligation of the digest with a double-stranded
oligonucleotide linker that contained KpnI- and BglII-complementing ends; a
SalI site was in the middle of the linker. E. coli DH5� was transformed with the
resulting product, and transformants were selected on LB-Cam medium. A
plasmid that carried the V. fischeri luxCDBEG genes under the control of the
lacZ promoter was isolated (see Fig. 2A). The in vitro EZ::TN �KAN-2�
insertion kit (Epicenter Technologies Inc., Madison, WI) was used to create a
null insertional mutation located 302 bp into the luxG ORF, resulting in pEN135.
The pEN135 plasmid was mated into V. salmonicida in a triparental mating as
described above.

Measurement of bacterial culture luminescence. Luminescence was measured
with a TD-20/20 luminometer (Turner Designs Inc., Sunnyvale, CA). The lumi-
nescence of late-log-phase cultures (OD, 0.7 to 0.9) at the time of the assay both
with and without the addition of decyl aldehyde (4.5-�g/ml final concentration)
was measured.

Total RNA isolation. V. salmonicida was streaked onto SWT agar and incu-
bated for 4 days at 16°C. An isolated colony was inoculated into 10 ml of SWT
broth and grown with shaking at 16°C to an OD of 0.5. Two milliliters of broth
(containing about 2 � 108 cells) was pelleted, and total RNA was extracted from
the pelleted cells by using the RNeasy kit (QIAGEN, Valencia, CA). The re-
sulting total RNA fraction (about 1 �g) was mixed with 2 �g of DNase I in a
75-�l reaction mixture containing 30 mM Tris-HCl (pH 7.8), 50 mM NaCl, and
10 mM MgCl2 in nuclease-free water. The reaction mixture was incubated at
37°C for 1 h to digest any contaminating DNA. Following this incubation, total
RNA was reisolated using the RNeasy protocol and quantified using a Biopho-
tometer (Eppendorf, Hamburg, Germany). PCR was used to confirm that DNase
I had removed DNA from the sample.

cDNA synthesis and reverse transcriptase PCR (RT-PCR) analysis. The ex-
pression of lux genes was determined using the SuperScript II RNase H	 reverse
transcriptase kit (Invitrogen, Carlsbad, CA). The following components were
combined in a first-strand cDNA synthesis reaction mixture: 2 pmol of sense or
antisense gene-specific primers, 1 to 1,000 ng of total RNA, and each de-
oxynucleoside triphosphate to a concentration of 10 mM in a final volume of 12
�l. The cDNA was synthesized according to the manufacturer’s protocol. For
second-strand PCR, 1 �l of the resulting cDNA mixture was combined with 10�
PCR buffer (200 mM Tris-HCl [pH 8.4] and 500 mM KCl), 2 mM MgCl2,

deoxynucleoside triphosphates (250 �M [each]), gene-specific primers (10 �M
[each]), and Taq polymerase to a final volume of 50 �l. The mixture was sub-
jected to the following amplification conditions: 95°C for 1 min, 60°C for 1 min,
and 72°C for 1 min for 30 cycles, followed by a one-time final extension step at
72°C for 7 min. Gene-specific primers were as follows: luxE sense primer (CPO7),
5�-ATTTATGAGTACGCCACAAG-3�; luxE antisense primer (CPO8), 5�-GGTA
CTCGCTTTCTTTGAAA-3�; luxR2 sense primer (CPO11), 5�-ATATAACGG
GTTCATTGCTC-3�; luxR2 antisense primer (CPO12), 5�-TGCCTACAAGAA
CTAACCAA-3�.

Preexperiment passage of V. salmonicida strains in fish and dosage titration.
An animal model was developed that controlled for variability due to water
conditions (temperature and osmolarity), equitable feeding, and fish stock. The
protocol was approved by the institutional review board for the ethical treatment
of animals at the Norwegian School of Veterinary Science. Atlantic salmon fry
used for the challenge averaged 50 g (wet weight) and were presmolts. Salmon
were kept in 200-liter freshwater tanks at 6 to 7°C with standard oxygenation and
a flow rate of 50 liters/h. Both the luxA mutant EN4 and the wild type NCMB
2262 were separately passaged for 2 days in Atlantic salmon fry to confirm that
the strains had not lost pathogenicity during in vitro culture (49). Mutant and
wild-type clones were recovered from their hosts by inserting a sterile probe into
the head kidneys and streaking for single colonies. These passaged strains were
tested in dosage titration experiments to find the optimum infective doses. A
series of twofold dilutions of these fish-passaged strains (1 � 108 to 5 � 106 CFU
per fish) was injected into the prepelvic abdominal regions of the fry. Mortality
was monitored each day over a 25-day time course.

Single-strain challenge infection of Atlantic salmon. Fish were injected in the
abdominal cavity with 1 � 108 CFU of the wild type or the luxA mutant grown
overnight in SWT broth. Fish were fin tagged according to the inoculum received
and placed in a single tank. The tank was observed twice daily for dead fish. V.
salmonicida does not survive in freshwater and does not transfer among individ-
uals kept in the same tank (8, 39; unpublished data). Mortality was tracked over
1 month, and V. salmonicida cells were recovered from the head kidney of each
dead fish by plating homogenates onto SWT agar. The identity of the infecting
strain (wild type or mutant) was confirmed by sequential plating on SWT-Kan
and then SWT agar plates.

Competition between luxA mutant and wild-type V. salmonicida strains infect-
ing Atlantic salmon. The fish-passaged luxA mutant EN4 and its wild-type parent
strain were grown overnight in SWT. The two strains were combined in an
approximately 1:1 ratio, and a total of 1.1 � 108 CFU per fish was injected into
the abdominal cavities of 50 fish. Fish were fin tagged accordingly and placed in
a single tank. The tank was observed twice daily for diseased and dead fish.
Tissue from the head kidney of each dead fish was first streaked onto nonselec-
tive SWT plates for single colonies. Subsequently, colonies were patched onto
SWT-Kan and SWT, and their differential growth was used to calculate the ratio
of the mutant cells to the wild-type cells in the infected fish. A similar procedure
was used in an in vitro competition experiment performed with SWT broth.
Cultures were inoculated to an OD of 0.01 and grown to stationary phase.

Nucleotide sequence accession number. The nucleotide sequence of the V.
salmonicida lux gene cluster has been submitted to GenBank (accession no.
AF452135).

RESULTS

The structural lux genes are conserved in V. salmonicida.
The order of the structural genes of the V. salmonicida lux
operon is luxCDABEG, which agrees with the gene orientation
in lux operons from other luminous bacterial species (Fig. 1).
The amino acid sequences corresponding to these six genes
from V. salmonicida and V. fischeri MJ1 are also highly con-
served, with levels of identity ranging between 65 and 87%

FIG. 1. Organization of bacterial lux genes in V. salmonicida (Vs) and V. fischeri (Vf). VCA represents homologs of the genes for the V. cholerae
VCA0181 protein (21) and the V. fischeri VFA0926 protein (36). ribG is a riboflavin synthesis gene (24). Unless indicated otherwise by an arrow,
ORFs are predicted to be transcribed from left to right. Black and gray highlighting denotes ORFs corresponding to luciferase genes and lux
regulatory genes, respectively (27, 29).
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(Fig. 2A). In addition, there are no detectable deletions or
insertions in this six-gene locus.

The V. salmonicida luxR and luxI homologs are arranged
differently from those in the V. fischeri lux region. In contrast to
the conserved arrangement of the lux structural genes, ho-
mologs of the quorum-sensing regulatory genes luxR and luxI
have a novel arrangement in V. salmonicida (Fig. 1) compared
to V. fischeri (1, 17). There are two copies of the luxR homolog,
one located upstream and one downstream of the structural
gene cluster. These homologs were designated luxR1 and
luxR2, and their predicted protein sequences showed 61 and
63% amino acid identity to the V. fischeri MJ1 luxR gene
product, respectively (Fig. 2A). The luxR1 and luxR2 predicted
protein sequences showed only 61% amino acid identity to
each other, suggesting that there has been considerable diver-
gence since the apparent gene duplication event. Like the luxR
gene of V. fischeri, both luxR1 and luxR2 of V. salmonicida
appear to be transcribed in a direction opposite to that of the
structural lux genes. In addition, there is a luxI homolog adja-
cent to, but apparently divergent from, the luxR2 homolog
(Fig. 2A). The product of this V. salmonicida luxI homolog
showed 81% amino acid identity with the product of V. fischeri
MJ1 luxI. Between the luxR1 and luxC V. salmonicida ORFs,
the position where luxI is located in V. fischeri, are 559 bp of
sequence that do not contain any apparent ORFs (Fig. 2A).

The arrangement of the V. salmonicida lux cluster is con-
served among different strains. PCR was used to determine
whether the lux gene arrangement present in V. salmonicida
strain NCMB 2262T was found in four other strains of this
species. The three sets of PCRs (see Materials and Methods)
covering the luxR1-luxC, luxE-luxR2, and luxR2-ribG regions all

produced products of the predicted 1.6-kbp, 1.9-kbp, and 1.9-
kbp lengths, respectively, for each of the five V. salmonicida
strains (data not shown). These results suggest that the ar-
rangement of the lux gene cluster in the regions amplified is
conserved within V. salmonicida.

The aliphatic-aldehyde deficiency can be genetically comple-
mented. One explanation for the aliphatic-aldehyde deficiency
and the reduced luminescence of V. salmonicida is that the
metabolism of this species is unable to provide the substrate(s)
required for the synthesis of aliphatic aldehyde. To examine
this hypothesis, V. fischeri AAS genes were expressed in trans
in V. salmonicida and the resulting luminescence per cell was
determined. V. salmonicida, expressing in trans the AAS gene-
carrying plasmid pEN135 (Fig. 3A), was detectably luminous
and produced at least 1,200-fold more luminescence than the
wild-type strain (Fig. 3B). The addition of exogenous aliphatic
aldehyde did not result in a significant increase in lumines-
cence in V. salmonicida cells harboring pEN135 (Fig. 3B).
These data suggest that V. salmonicida is not physiologically
limited in its ability to produce the substrates required for
aliphatic-aldehyde synthesis. In addition, because V. salmoni-
cida cells harboring pEN135 and those harboring the vector
plasmid pV08 have the same growth rate (3.3 h per genera-
tion), the production of additional aliphatic aldehyde does not
appear to be toxic to V. salmonicida. It is unlikely that the
collateral presence of a copy of the V. fischeri luxB gene in the
construct (Fig. 3A) is responsible for the enhanced lumines-
cence expression observed because aldehyde addition alone
increased the luminescence of wild-type cells by several orders
of magnitude (Fig. 3B).

FIG. 2. Bioinformatic and RT-PCR transcriptional analysis of the V. salmonicida lux region motifs. (A) The putative direction of transcription
is from left to right unless indicated otherwise by an arrow. Black and gray highlighting denotes ORFs corresponding to luciferase genes and lux
regulatory genes, respectively. The number listed below each gene name is the percentage of identity between the predicted amino acid sequence
for the ORF and the sequence of the equivalent lux protein in V. fischeri strain MJ1. Stem-loop symbols below the ORFs represent the approximate
locations of putative rho-independent transcriptional terminators. VCA is a homolog of the gene for the VCA0181 protein, a V. cholerae
hypothetical protein with homologs found in both V. salmonicida and V. fischeri. (B) RT-PCR products of sense (lanes 1 to 4) and antisense (lanes
5 to 8) transcripts of luxE amplified from V. salmonicida total cellular RNA. The RNA extract was either undiluted (lanes 1 and 5), diluted 1:10
(lanes 2 and 6), diluted 1:100 (lanes 3 and 7), or diluted 1:1,000 (lanes 4 and 8). RT-PCR performed with no added RNA gave no product (data
not shown). In lanes 1, 2, 5, and 6, a band matching the predicted 803-bp luxE product can be seen. Std, standard size markers; from top: 1,000,
900, 700, and 500 bp.
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The intergenic regions of V. salmonicida lux genes share
conserved elements with similar regions in V. fischeri. The
intergenic regions between luxR1 and luxC and between luxR2
and luxI were analyzed for possible transcriptional promoter
elements. The putative transcriptional initiation loci upstream
of both luxC and luxI in V. salmonicida contain substantial
similarities to the region upstream of luxI in V. fischeri MJ1
(Fig. 4). There are two putative regulatory elements, lux box 1
(between luxR1 and luxC) and lux box 2 (between luxR2 and
luxI), in V. salmonicida. Both of these elements precede a 	10
region that is identical to that found in V. fischeri MJ1 (Fig. 4).
In addition, V. salmonicida lux box 1, V. salmonicida lux box 2,
and the V. fischeri lux box are centered at 	42.5, 	43.5, and
	42.5 bp, respectively, upstream of their predicted transcrip-
tional start sites (6) (Fig. 4). Putative ribosomal binding sites

and start codon loci, determined by sequence similarities, are
conserved between V. fischeri MJ1 and V. salmonicida for luxI,
luxC, luxA, luxB, and luxG (Fig. 4 and data not shown). How-
ever, unlike V. fischeri MJ1, V. salmonicida has no apparent
start codon at the 5� end of the luxD ORF.

Stem-loop structures in the V. salmonicida lux region are
conserved. To assess how transcription of the V. salmonicida
lux operon may be terminated, the sequence data were
screened for stem-loop structures that may function as rho-
independent transcriptional-termination factors. We identified
three putative stem-loop structures in the lux gene cluster of
V. salmonicida. These structures are located in the middle of
the luxD and luxA coding regions and at the 3� end of luxB
(Fig. 2A). The sequence of the stem-loop at the luxB ter-
minus in V. salmonicida (AAAAGAATGACAGAATTA

FIG. 3. Genetic complementation of the aliphatic-aldehyde deficiency in wild-type V. salmonicida. (A) The plasmid used for complementation
studies, pEN135, contains the V. fischeri ES114 AAS genes, luxCDE, as well as the luciferase subunit gene luxB. The other luciferase subunit gene,
luxA, is deleted, and luxG (gray) is inactivated by a transposon insertion (triangle). MCS, multiple cloning site. (B) Comparison of luminescence
produced by wild-type V. salmonicida harboring the vector plasmid pVO8 and that produced by wild-type V. salmonicida harboring the AAS
gene-carrying plasmid pEN135. Aliquots of cultures (late exponential phase of growth; OD at 600 nm, 0.7 to 0.9) were either immediately measured
photometrically or supplemented with aliphatic aldehyde before measurement. The dashed line represents the limit of photometric detection. Data
shown are representative of the results of three independent experiments.

FIG. 4. Sequence comparison of the intergenic regions between luxR2 and luxI of V. salmonicida (Vs luxR2-luxI), luxR and luxIC of V. fischeri
MJ1 (Vf luxR-luxIluxC), and luxR1 and luxC of V. salmonicida (Vs luxR1-luxC). The V. fischeri luxR-luxIC and V. salmonicida luxR1-luxC sequences
have been extended into their luxC ORFs. Identical nucleotides in the V. salmonicida luxR2-luxI and V. fischeri luxR-luxIC sequences are indicated
with asterisks above the alignment. Identical nucleotides in the V. fischeri luxR-luxIC and V. salmonicida luxR1-luxC sequences are indicated with
asterisks below the alignment. The highlighted sequences are based on motifs conserved around V. fischeri lux genes (17). These regions include
a lux box, a 	10 promoter region, and known or putative ribosome binding sites (RBS). Start (ATG) and stop (TAG) codons are also highlighted.
Gray boxes highlight sequences required for a functional lux box in V. fischeri MJ1 (6).
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ACTCTGCCATTCTTTT) is similar to those in other lumi-
nous bacteria but was predicted to have greater thermostability
(�G 
 	15 kcal/mol) than the equivalent structures in P.
leiognathi (	12 kcal/mol), V. harveyi (	10 kcal/mol), and V.
fischeri MJ1 (	5 kcal/mol). In V. salmonicida, there are two
additional predicted stem-loops, between luxI and ribG (Fig.
2A). It was previously shown by reporter gene analysis that an
equivalent stem-loop in V. fischeri, also located between the lux
operon and ribG, is a bidirectional transcriptional terminator
(42).

Sense and antisense transcripts of luxE and luxR2 are pro-
duced by V. salmonicida. The organization of the V. salmoni-
cida lux operon, coupled with its aldehyde-deficient lumines-
cence physiology (13), suggested that a long transcript from the
rightward luxR2 promoter (Fig. 2A) might exert antisense con-
trol over the expression of luxE, one of the genes required for
aldehyde synthesis. In support of this hypothesis, when total
RNA isolated from growing cells of V. salmonicida was mixed
with primers to amplify either sense or antisense luxE or luxR2
transcripts by reverse transcriptase PCR, we detected sense
and antisense transcripts of both genes (Fig. 2B; luxR2 data not
shown). The relative amounts of the sense and antisense luxE
products resulting from the semiquantitative RT-PCR sug-
gested that the level of the sense transcripts was higher than
that of the antisense transcripts.

Complementation of the luxA mutation. Complementation
of the luxA mutation in vitro was observed in the luxA mutant
EN4 harboring the plasmid pEN134 compared to EN4 harbor-
ing the vector parent plasmid pV08. Specifically, in the pres-
ence of decyl aldehyde (10 �l/ml), EN4 harboring the plasmid
pEN134 or pV08 produced 109 or �104 quanta/s/OD unit,
respectively. In the absence of added decanal, an aliphatic
aldehyde, EN4 harboring either pEN134 or pV08 produced 5 �
105 or �104 quanta/s/OD unit, respectively.

Atlantic salmon infected with a luxA mutant show delayed
mortality. Dose titration data showed that inoculation with
approximately 1 � 108 CFU of V. salmonicida produced a
consistent level of mortality in salmon such that the criterion
for a 50% lethal dose would be observed by approximately day
10 (data not shown). This dose is at the upper range of the 50%
lethal doses determined previously (5 � 106 to 1 � 108 CFU)
by Wiik et al. (49), perhaps because the fry we used were
particularly robust. In the large-scale studies, each fish was
injected with 1 � 108 CFU of either the luxA mutant (EN4) or
its wild-type parent. Mortality was observed starting at day 2
and continued until day 25 (Fig. 5A). There was no evidence of
cross contamination between infected animals: the postmor-
tem examination of fish injected with wild-type cells did not
reveal the presence of the mutant strain; the converse was also
true. Dead fish did not display pathology on their external
surfaces; however, their livers were atypically fatty, and points
of hemorrhaging were observed in both the intestines and the
kidneys. Levels of mortality in the two branches of the exper-
iment were identical until day 9 (Fig. 5A), at which time the
mutant showed a dramatic delay in its ability to kill fish com-
pared to the wild type. The difference between the survival
plots for the mutant and the wild type was statistically signifi-
cant (log rank test, P 
 0.0002; Wilcoxon test, P 
 0.0015).

The luxA mutant is outcompeted by the wild type during
infection. Cells of the luxA mutant EN4 and its wild-type par-

ent were combined in approximately equal numbers (1.07:1),
and a portion of this mixed inoculum was injected into the
abdominal cavities of 50 fish. The final ratio of mutant cells to
wild-type cells in the infection was assessed for each fish that
died over the 25-day experiment. Mortality groupings were
made according to the duration of infection as a method of
identifying stages of the disease (group A, 1 to 5 days; group B,
6 to 10 days; group C, 11 to 15 days; and group D, 16 to 20
days). The mutant was attenuated approximately threefold
during the first day postinoculation, and the competitive dis-
advantage continued throughout the experiment, with the
competitive index decreasing from 0.35 to 0.11 to 0.05 to 0.03
for groups A to D, respectively (Fig. 5B). To determine
whether there was a significant growth rate difference between
the strains during growth in culture, mixed 1:1 inocula of mu-

FIG. 5. Data from fish virulence experiments comparing the luxA
mutant EN4 and its wild-type parent. (A) Survival plot for Atlantic
salmon fry infected with either the luxA mutant EN4 (solid line) or the
wild type (dashed line). Mortality among the fish infected with the
mutant was significantly delayed compared to that among the fish
infected with the wild type (log rank test, P 
 0.0002; Wilcoxon test,
P 
 0.0015). Inputs were 9.7 � 107 and 1 � 108 CFU per fish for the
mutant and the wild type, respectively. (B) Competition experiment
with the luxA mutant EN4 and the wild type. Fish were grouped
according to the duration of infection before death (A, 1 to 5 days; B,
6 to 10 days; C, 11 to 15 days; and D, 16 to 20 days). The relative
competitive index (RCI) of the luxA mutant for each fish was deter-
mined by dividing the output ratio for the two strains (mutant cells to
wild-type cells) in the head kidney of the dead fish by the input ratio in
the mixed inoculum. An RCI of less than 1.0 indicates that the wild
type outcompetes the mutant. Each symbol on the graph represents
the RCI calculated for one fish, and the geometric mean for each
group is indicated by a bar.

1830 NELSON ET AL. APPL. ENVIRON. MICROBIOL.



tant and wild-type cells (OD, 0.01) were added to SWT broth
and replicate cultures were grown overnight. The ratios of
mutant to wild-type cells at stationary phase ranged from 0.85
to 0.96.

DISCUSSION

We have characterized the luminescence gene cluster of V.
salmonicida with the goal of understanding the mechanism and
role of this organism’s cryptic bioluminescence. To this end, we
discovered a unique gene structure that includes an unusual
arrangement of quorum-sensing genes. We also showed that a
mutation in luxA could attenuate V. salmonicida pathogenesis.
Although the nature of the association between lux gene ex-
pression and virulence remains unknown, the implications of
uncovering a new class of virulence factors are significant. The
introduction and development of V. salmonicida genetics now
permits future investigators to explore virulence in what per-
haps is the only truly natural vertebrate model system for
studying pathogenesis in the genus Vibrio.

The prevalence of luciferase genes in Vibrionaceae species
that do not produce detectable light has led to the question of
what role, if any, there is for the activities encoded by these
genes in nonluminescent bacteria. In at least some of these
bacteria, the luciferase genes are expressed but the reaction
catalyzed by their corresponding proteins is limited by the
availability of the aliphatic-aldehyde substrate. The experimen-
tal addition of an aliphatic aldehyde results in detectable light
emission from these cells (12, 13; unpublished results). Such
cryptic luminescence in V. salmonicida has been described pre-
viously and may occur as a result of several possible explana-
tions: (i) one (or more) of the genes encoding AAS enzymes is
absent or nonfunctional; (ii) all the enzymes are synthesized,
but the cell produces insufficient substrates for the AAS reac-
tion; and/or (iii) the relative level of expression of the AAS
genes is reduced.

The V. salmonicida lux operon contains all of the structural
lux genes that are required for bioluminescence (Fig. 1). These
genes, luxCDABE, are organized in the typical arrangement
observed in other known lux operons. The V. salmonicida lux
nucleotide sequences are most similar to those of its close
relative, V. fischeri, and there are no detectable deletions or
insertions in the structural lux genes. These data suggest that
the aliphatic-aldehyde deficiency is not caused by the absence
of the AAS genes.

We also determined that the synthesis of aliphatic aldehyde
is not limited by the ability to provide substrates for AAS (Fig.
3B). The precursors for aliphatic aldehyde, namely, saturated
long-chain fatty acids and reducing equivalents (5, 43, 48), are
apparently readily available for AAS in V. salmonicida. There-
fore, we explored the hypothesis that reduced or aberrant
expression of the AAS genes may explain cryptic biolumines-
cence in V. salmonicida.

The transcription of bioluminescence genes is complex but
has been well studied with other models. For example, the
218-bp intergenic region between the start codons for luxR and
luxI in V. fischeri is the site where the transcription factors LitR
(12) and LuxR (41) bind to divergently promote the transcrip-
tion of luxR and luxI, respectively. Although the exact binding
site for LitR is not known, LuxR, in complex with an acyl-

homoserine lactone autoinducer, binds at a specific region
called the lux box (7). The intergenic region between luxR1 and
luxC in V. salmonicida also contains a conserved lux box and a
	10 region that is identical to that of V. fischeri. In addition,
there is a similar translational initiation region for a luxI gene
(Fig. 4); however, there is no luxI homolog following this locus
in V. salmonicida. Instead, the region between lux box 1 and
luxC in V. salmonicida consists of only half the number of
nucleotides found between the lux box and luxC in V. fischeri.
We also detected evidence for a 2-bp frameshift that may result
in a premature stop codon (TAG) (Fig. 4). Following this
intergenic region in V. salmonicida, elements of the transla-
tional promoter for luxC are conserved between V. salmonicida
and V. fischeri. Thus, the presence of the conserved transcrip-
tional initiation elements suggests that the transcription of the
V. salmonicida lux operon may be initiated in a fashion similar
to that of the V. fischeri operon but that the first gene tran-
scribed in V. salmonicida is the luxC homolog and not a luxI
homolog. Strong stem-loop structures are predicted in the V.
salmonicida lux gene cluster that are shared across biolumines-
cent taxa. The role that these stem-loops play in transcriptional
modification remains unknown. Additional findings that V.
salmonicida produces an as yet undescribed autoinducer (13;
data not shown) and encodes a homolog of the V. fischeri
luminescence regulatory gene litR (12; data not shown) suggest
that V. fischeri and V. salmonicida share other genetic control
mechanisms for bioluminescence expression. However, the na-
tures of the expression differ.

Homologs of the luxR and luxI regulatory genes in V.
salmonicida have a novel arrangement. First, there are luxR
homologs located both upstream and downstream of the V.
salmonicida structural lux genes (Fig. 1). Second, there is a
luxI homolog downstream of luxR2. While this arrangement of
luxR::luxI is found in V. fischeri as well, the location of the
regulatory gene pair downstream rather than upstream of the
structure genes is unique to V. salmonicida. In addition,
the bidirectional transcriptional terminator at the end of luxG
in other bioluminescent bacteria is decoupled from luxG in V.
salmonicida but remains upstream of ribG. This novel genetic
structure suggests a transcriptional model in which rightward-
sense transcription from luxC to luxE may continue, generating
antisense luxR2. Conversely, leftward-sense transcription from
luxR2 may produce antisense luxE transcripts. RT-PCR de-
tected both sense and antisense transcripts for luxE and luxR2.
These data support the model that antisense gene regulation
drives cryptic bioluminescence by reducing the expression of
luxE and, therefore, AAS. Preliminary data suggest that a
mutation in luxR2 delays the onset of peak bioluminescence
but eventually produces a higher peak level than that for the
wild type (data not shown). Further mutational and quantita-
tive PCR analyses of each lux gene will be needed to test this
model in which antisense RNA contributes to the cryptic bio-
luminescence phenotype of V. salmonicida.

Given the novelty of the arrangement of the luminescence
gene cluster in V. salmonicida, is cryptic bioluminescence
merely a remnant of an ancestral phenotype, or does it serve a
current biological function? All five V. salmonicida strains
tested appear to share the same lux gene cluster organization.
The conservation of the arrangement within the species sug-
gests that a function of the lux gene cluster may exist. To begin
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answering questions of functionality, we asked whether an in-
sertional mutation in luxA would affect the virulence of V.
salmonicida.

In a single-strain challenge experiment, the mutagenesis of
luxA resulted in a marked delay in mortality among V. salmo-
nicida-infected Atlantic salmon compared to that induced by
the wild type. Similarly, in a mixed-strain competition experi-
ment with the mutant and the wild type, the luxA mutant was
attenuated 3- to 50-fold depending on the duration of infec-
tion. These data demonstrate that the disruption of luxA at-
tenuates V. salmonicida colonization. However, the mechanism
underlying this attenuation is not known. We hypothesize that
the attenuation may be directly due to the loss of luciferase,
which results in the elimination of the dark luciferase reaction.
The dark luciferase reaction produces toxic oxygen radicals
that may serve as a direct virulence agent or a stimulant for
bacterial DNA repair (15, 22, 23, 25). Alternatively, the lucif-
erase reaction may function as an alternative pathway to pro-
vide oxidized flavin at low oxygen tensions which may aid
colonization if oxygen becomes limited (4, 26).

In the symbiosis of V. fischeri with the Hawaiian squid
Euprymna scolopes (3), bioluminescence has been shown to
be a colonization factor for the bacterium (46). At the cel-
lular level, the luciferase reaction of V. fischeri is associated
with symbiosis-induced host development including epithe-
lial-cell swelling, as well as with the maintenance of persis-
tent colonization of the host squid tissue (46). Thus, a sim-
ilar, but nonbeneficial, role in pathophysiology may underlie
the attenuation observed in the luxA mutant of V. salmoni-
cida. In summary, the development of molecular tools for V.
salmonicida, together with the creation of a natural salmon
infection model, have led to a new system with which to
evaluate the genetic structure, function, and evolution of
bacterial bioluminescence in pathogenesis.
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