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Use of Hybridization Chain Reaction-Fluorescent In Situ
Hybridization To Track Gene Expression by Both Partners during
Initiation of Symbiosis

K. Nikolakakis, E. Lehnert, M. J. McFall-Ngai, E. G. Ruby

Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA

The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial
symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps re-
quired to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these
changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simulta-
neously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized,
transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells
while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population.

Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue re-

sponses to colonization.

Juveniles of the squid Euprymna scolopes hatch as aposymbiotic
squid, i.e., squid without bacterial symbionts, but are rapidly
and efficiently colonized by a single species of bacteria, Vibrio
fischeri. In coastal regions with established populations of these
squid, V. fischeri constitutes only 0.01 to 0.15% of the ~10° bac-
terial cells present per ml of seawater (1). Thus, as it initiates the
association, V. fischeri transitions from constituting just a small
fraction of the total bacterioplankton to being the exclusive sym-
biont within the host’s light-emitting organ (Fig. 1A and B). Pre-
vious studies of the symbiosis indicate that in this highly selective
process, both the host and the bacterium have evolved mecha-
nisms to ensure the specificity of the symbiotic relationship (2).
Furthermore, the presence of the bacterial symbiont triggers a
specific developmental program in the host (reviewed by McFall-
Ngai [3]). Not surprisingly, transcriptional responses in both the
host and the bacteria play a role in establishing the symbiosis as
well as in mediating light organ development (4, 5). However, as
in most other host-microbe interactions, a formidable challenge
has been to identify exactly where within the target tissues and at
what stages in the colonization process these transcriptional
changes take place in each partner.

During their first 12 h of initiating colonization, the bacteria
traverse several distinct regions of the host light organ (Fig. 1C).
Briefly, planktonic bacteria in ambient seawater are drawn into
the body cavity of the squid, where they associate with epithelial
extensions of a ciliated surface on each side of the light organ.
These ciliated appendages help direct bacteria to three pores at
their base. Once they pass through the pores, the bacteria navigate
along ducts into an antechamber, and from there they navigate
into deep crypts. The medial end of the antechamber serves as a
bottleneck (6), and only a small number of bacteria are able to
migrate into the crypts before the bottleneck restricts (7). After
reaching the crypts, the symbionts multiply, eventually achieving
a density sufficient to induce their lux genes and, thus, biolumi-
nescence, the bacterial product used by the host in its nocturnal
behavior (8). During this first 24 h of symbiotic development, the
host tissues also respond to the presence of bacteria, changing the
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expression of a number of genes (4), including the induction of
some, like the peptidoglycan-receptor E. scolopes proteins PGRP1
(EsPGRP1) and PGRP2 (EsPGRP2), that are likely derived from
those involved in host immunity (9, 10). Other protein transcripts
not associated with immunity, such as the E. scolopes proto-
cadherin-like CadDP1 (EsCadDP1), were found to be upregu-
lated ~7-fold at 24 h postcolonization in an independent
transcriptome sequencing study of whole-organ extracts (S. Mo-
riano-Gutierrez, personal communication). Protocadherin is an
adhesion molecule that is expected to be present in the brush
border of the epithelium leading to the crypts (11) but whose
regulation and localization remain undescribed.

To investigate the spatiotemporal regulation of gene expres-
sion in both the host and the symbiont, we have adapted hybrid-
ization chain reaction-fluorescent in situ hybridization (HCR-
FISH) (12-14) to the squid-vibrio system. This newly established
technique was developed for the probing of zebrafish embryos and
has recently been used to investigate the patterns of expression of
the microbial community of the termite gut (15) and mRNA ex-
pression patterns in mouse embryos (16) and for the sensitive
detection of environmental organisms (17). In this study, we show
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FIG 1 Anatomy of the E. scolopeslight organ. (A) An anesthetized animal was imaged using a dissection scope, revealing the light organ and ink sac (dashed box)
through the translucent mantle tissue. (B) The host light organ counterstained using acridine orange as a live stain. The light organ is visible above the ink sac,
and two pairs of ciliated appendages splayed out to each side can be seen. The light organ is bilobed, with a pair of appendages, three pores, and three crypts being
present on each side. (C) Model of the colonization area and process. The red dashed line indicates the general path that V. fischeri cells must follow as they pass
from the ambient seawater to the interior of the host’s light organ. Once they are inside the mantle cavity, the bacteria attach to the ciliated field (cf) before
migrating to the pores (p) at the base of the light organ appendages. They then pass into the ducts (d) and through the antechamber (a) before pausing at the
bottleneck (b). Only one or a few bacteria pass the bottleneck before it constricts, and once they are past the bottleneck, they enter the deep crypts (c), where they

are able to multiply and begin to luminesce.

that HCR-FISH allows multiple genes to be probed simulta-
neously in whole mounts of both a host and its symbiont in order
to study the transcriptional events surrounding microbial coloni-
zation. In addition, HCR-FISH provides a means to visualize the
regulation of rare transcripts unapproachable by traditional in situ
hybridization (12). Specifically, with HCR-FISH, the amplified
fluorescent signal can be detected throughout an intact sample
like the light organ, and a suite of unique hairpin sequences allows
multiple transcripts to be probed simultaneously. The timing and
localization of gene expression by bacterial symbionts within this
tissue have previously been accomplished using promoter fusion
constructs (18, 19). However, visualization of such fluorescent
protein reporters can be problematic because individual bacterial
cells are not easily resolved, the signal is often too weak, and its
accumulation and maturation lag behind the induction of gene
expression. In contrast, by using multiple probes per transcript,
the HCR-FISH protocol permits the signal to be easily increased in
a roughly linear fashion, permitting direct detection of the tran-
scripts in single cells at the time of their synthesis.

Here we demonstrate the strength of the HCR-FISH method
by simultaneously probing several transcripts in both the bacterial
symbiont and the host, thereby revealing (i) the time during col-
onization of lux expression by the symbiont and (ii) newly local-
ized patterns of gene expression in the host. Successful adaptation
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of this technique to the squid-vibrio system and, by extension,
other host-microbe interactions greatly increases the sensitivity
with which transcriptional changes can be observed and allows a
degree of spatial and temporal precision not previously possible in
studies of host-symbiont engagement.

MATERIALS AND METHODS

General methods. Adult E. scolopes squid were gathered off the coast of
Oahu, HI, and maintained and bred as previously described (20). Newly
hatched juvenile squid were placed in filter-sterilized Instant Ocean (I10;
Aquarium Systems, Mentor, OH, USA) from the University of Wisconsin
facility’s aquaria. To inoculate the squid, V. fischeri strains were grown
overnight as previously described (21) at 28°C with shaking in Luria-
Bertani salt (LBS) medium (22), containing antibiotics where appropri-
ate. On the next morning, cultures were diluted into a seawater-based
tryptone (SWT) medium (23) and allowed to regrow to mid-log phase.
The bacteria were then added at a concentration of ~5,000 CFU ml ™' of
IO containing the newly hatched juveniles. After 3 h, the squid were
moved to sterile IO to ensure relatively synchronized colonization. The
inoculum concentration was verified by plating a small volume on LBS
agar medium to determine the number of CFU of bacteria present milli-
liter ™.

HCR-FISH. The nucleic acid probes and hairpin sequences used
in this study were obtained from Molecular Instruments (www
.molecularinstruments.org), which also assisted with the probe design.
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FIG 2 Visualization of multiple transcripts within animal tissues. Representative images at X 10 (A) and X40 (B) magnifications of the EsHsp90 transcript (blue)
and the actin transcript (green) are shown. (A) The actin transcript is present throughout much of the light organ and strongly expressed in striated muscle
(arrowhead). (B) In the enlarged area encompassed by the dashed box, the actin transcript is not detectable either in the ciliated field (cf) around the pore (p) or
in the epithelium of the appendages, although it is easily observed in the vascular tissue within the appendage (arrowhead). In contrast to the actin transcript, the
probe for the EsHsp90 transcript was detected strongly and uniformly throughout the appendages and ciliated field. Ant., anterior; Pos., posterior.

Juvenile squid were collected prior to or 3, 6, or 24 h after an initial
exposure to V. fischeri. Animals were immediately anesthetized in artificial
seawater containing 2% ethanol and fixed overnight at 4°C in 4% para-
formaldehyde in marine phosphate-buffered saline (mPBS; 50 mM phos-
phate buffer, pH 7.4, 0.45 M NaCl). The light organs were removed by
dissection and permeabilized overnight at room temperature in mPBS
containing 1% Tween 20 detergent. For additional permeabilization,
samples were treated with 0.01 mg proteinase K (catalog number
AM2546; Ambion) per ml of permeabilization buffer for 15 min at room
temperature; the reaction was halted by two washes of glycine (2 mgml™")
in permeabilization buffer. The sample was then postfixed for 1 h in 4%
paraformaldehyde (PFA) in mPBS at room temperature and washed five
times for 5 min each time in permeabilization buffer.

The solutions used for HCR-FISH were identical to those described
previously (12), except that the probe hybridization buffer was diluted 1:1
with 2X mPBS to prevent the lysis of the V. fischeri cells. Samples were
equilibrated in 500 wl mPBS-supplemented probe hybridization buffer at
65°C for 30 min, followed by 2.5 h of incubation in fresh solution. The
samples were then incubated overnight at 45°C in mPBS-supplemented
probe hybridization buffer, to which up to 5 probes per gene of interest
were added to a final concentration of 2 pmol per probe. To remove
nonspecifically bound probe, samples were sequentially incubated for 15
min at 45°C in 500 pl probe wash buffer to which 5X SSC (750 mM NaCl,
75 mM sodium citrate, pH 7) had been added to final concentrations
(vol/vol) of 0%, 25%, 50%, and then 75%. This wash sequence was fol-
lowed by two 15-min washes and then two 30-min washes at 45°C in 500
pl 5X SSC. After the probe washes, 6 pmol of each hairpin sequence was
separately heated to 95°C for 90 s and allowed to cool at room temperature
in the dark for 30 min. During this period, samples were equilibrated twice
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with 500 wl DNA amplification buffer at room temperature for 30 min.
Hairpin sequences were then added to 100 pl DNA amplification buffer,
in which samples were then incubated overnight at room temperature in
the dark. To remove unbound hairpin sequences, samples were washed
four times in 500 wl 5X SSC containing 0.05% Tween 20 for 5 min,
followed by two 30-min washes. Samples were either imaged immediately
or stored for up to 3 days in permeabilization buffer; all samples compar-
ing the same gene were imaged by confocal microscopy on the same day.
When only bacteria within squid tissue were being probed, samples were
counterstained overnight in 1:25 Alexa Fluor 633-phalloidin (catalog
number A22284; Molecular Probes) in permeabilization buffer. All probe
sequences are available in Table S1 in the supplemental material. A more
complete protocol is available in the supplemental material.

Imaging. Samples were imaged using a Zeiss LSM 510 confocal mi-
croscope. Figure panels were arranged and labeled using the Inkscape
program. The brightness of the final figures was adjusted for visual clarity
using Adobe Photoshop software.

RESULTS

Simultaneous labeling of multiple host transcripts. To deter-
mine the efficacy of HCR-FISH in colonized light organ tissue and
to identify broadly distributed, normalizing transcripts, we
probed whole-mount Euprymna light organs for transcripts of
two widely distributed host genes: those encoding the structural
protein actin and the chaperone Hsp90 (Fig. 2). We found that the
Hsp90 transcript was distributed evenly throughout the tissues,
allowing it to serve both as a control for uniform probe perme-
ation and as a normalization factor to identify areas of increased
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FIG 3 Tracking the bacterial position during initiation of colonization. For all images, bacteria were labeled with probes specific for 165 rRNA (green), and squid
tissue was stained with Alex Fluor 633-phalloidin (blue). (A" to D") Enlargements of the boxed regions in panels A to D, respectively. Magnifications, X40. (A,
A’") Before exposure, no bacteria were visible within the light organ of the host. (B, B") After 3 h of exposure, bacteria (arrowheads) have associated with the host
and begin to be visible within the light organ ducts, located immediately in the interior of the pores (Fig. 1C). (C, C") By 6 h postexposure, bacteria have migrated
into the light organ and have begun to colonize the crypt space. (D, D") After 24 h of exposure, the host is bioluminescent and the symbionts are visible

throughout the crypts.

expression of other genes. Interestingly, while the actin transcript
appeared to be abundant in striated muscle cells, it was conspicu-
ously less visible in the organ’s ciliated surface and appendages.
Moreover, these low actin transcript levels were unlikely due to
poor permeation, as demonstrated by both the clear presence of
the probe signal for Hsp90 and the strong staining of the vascular
tissue in the interior of the appendage. These results demonstrate
the ability of HCR-FISH to label and detect transcripts from
multiple genes in host tissue and the uniformity of the distribu-
tion of the Hsp90 transcript, making its use as an internal control
preferable to that of actin for HCR-FISH experiments in the squid
light organ.

Bacterial transcript labeling in the squid. To localize the sym-
bionts during colonization, probes specific for the bacterial 16S
rRNA were designed. Because V. fischeri is the only bacterium
present within the light organ, the species specificity of the probes
was not a concern. Labeled bacteria were easily localized within
the host tissue at different time points during the initiation of
symbiosis (Fig. 3). Due to the high copy number of the 16S rRNA
transcript, the intensity of the signal was sufficient to distinguish
individual cells within the host, even when a low-magnification
(i.e., X10) lens was used (see Fig. S1 in the supplemental material).
Bacteria were observed at almost all stages of their migration into
the host, and no signal from the host tissue was observed; there-
fore, rRNA provides an effective marker for following bacterial
migration. In addition, these samples were stained with Alexa
Fluor 633-phalloidin after the amplification stage of the HCR-
FISH protocol, illustrating the compatibility of this method with
alternate fluorescent staining methods.

HCR-FISH visualization of the spatiotemporal regulation of
gene expression in the host and symbiont. To determine the abil-
ity to visualize transcriptional changes in the symbiont, probes
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specific for the luxA gene were designed. The lux locus has been
well studied in V. fischeri, where it is transcriptionally regulated via
quorum sensing (24). As the bacteria grow in the host crypts, they
reach a density sufficient to induce transcription of the lux
operon, leading to the production of bioluminescence. To track
the pattern of Jux expression during colonization, bacteria were
labeled with probes specific for both the 16S rRNA and the luxA
transcript, and the host tissue was labeled with probes specific for
EsHsp90 (Fig. 4). This combination of probes allows localization
of symbionts within the host tissue through the visual identifica-
tion of the crypt structure and further demonstrates that mixed
host and symbiont probe/hairpin sequence sets can simultane-
ously be used on the same tissue sample. The bacteria in samples
fixed at 6 h postcolonization showed only a weak, isolated signal
from the JuxA transcript, while those in samples fixed at 24 h
revealed a clear and robust signal throughout the population, con-
sistent with the onset of the animal’s luminescence when recorded
at the same time points. The possibility of nonspecific amplifica-
tion of off-target bacterial mRNA was addressed by repeating the
experiment with a Alux mutant strain (25). As predicted, no signal
was observed at 24 h in animals colonized by this mutant strain,
despite the presence of large numbers of bacteria within the host
crypts (see Fig. S2 in the supplemental material).

EsPGRP2 is an N-acetyl-muramyl-L-alanine amidase that lo-
calizes to the apical cytoplasm of the host epithelial tissue (10).
Persistent colonization by V. fischeri induces the release of
EsPGRP2 into the lumen of the deep crypts, resulting in the deg-
radation of the peptidoglycan derivative tracheal cytotoxin
(TCT), a powerful bacterial inducer of host development (26).
While the EsPgrp2 transcript level was previously shown to in-
crease in the light organ at 18 h postcolonization (4), it was un-
known whether this increase was uniform throughout the organ
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FIG 4 Tracking expression of luxA during host colonization. (A and B) Visualization of V. fischeri by labeling of the 16S rRNA (green); (A" and B') expression
of the luxA gene (red); (A" and B") visualization of host tissue by labeling the EsHsp90 transcript (blue), in which the label is overlaid with the two bacterial labels;
(A, A’,and A”) at 6 h after inoculation, V. fischeri (arrows) has migrated into the crypts but has not yet grown to a sufficient density to induce strong expression
of the luxA gene; (B, B’, and B”) after 24 h, when the symbionts (arrows) are densely packed and brightly bioluminescent, V. fischeri shows strong expression of

the luxA gene.

or localized to a specific region of cells. We probed for EsPGRP1/2
expression at 24 h postcolonization and found that the upregula-
tion of this transcript in response to colonization by V. fischeri was
confined essentially to the deep crypt epithelium (Fig. 5), seem-
ingly in the same cells that released the protein into the crypts.

To further test the ability of HCR-FISH to localize host gene
expression, we probed for another transcript (EsCadDP1) encod-
ing a protocadherin-like protein. Whereas we observed only dif-
fuse expression of this transcript in the light organ tissues of
aposymbiotic animals (Fig. 6A), symbiotic animals expressed
EsCadDP1] in the epithelial cells lining the ducts and antechambers
at detectably higher levels (Fig. 6B). Intriguingly, the epithelium of
the crypt cells, which is in direct contact with the bacterial popu-
lation, showed no change in this gene’s expression compared with
that of the epithelium of the crypt cells of aposymbiotic animals
(Fig. 6C). This visualization of the transcript encoding EsCadDP1
exclusively in the light organ ducts and that encoding EsPGRP1/2
solely within the crypts demonstrated the induction of specific
genes in specific locations along the 100-pm path traversed by V.
fischeri during its migration through host tissues.

DISCUSSION

The natural colonization of an animal host by either beneficial or
pathogenic bacteria is a complex process whose trajectory and
genetic underpinnings are still poorly understood. Nevertheless, it
is likely that, during establishment of such associations, recipro-
cally induced transcriptional changes occur in both the bacteria
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and the host cells with which they interact. Because host tissues are
often complex and inaccessible and small numbers of bacteria
typically initiate a colonization, it is challenging to define either
the particular cells that undergo these changes or the precise stage
of the colonization process during which symbiosis-induced reg-
ulation of gene expression occurs. Application of HCR-FISH per-
mits the visualization of transcriptional responses by multiple,
specific genes that occur in individual cells, providing a detailed
temporally and spatially defined picture of the program of gene
expression (12). As such, this capability, when applied to symbi-
otic systems, promises to reveal the dynamics of gene expression
underlying the host-microbe interaction with a temporal and spa-
tial precision and sensitivity not previously possible.

In adapting this approach for use with the Euprymna-Vibrio
system and perhaps others, there are several caveats and concerns
to keep in mind. As with other in situ hybridization techniques, it
is important to perform probe validation experiments (see Fig. S2
in the supplemental material) with gene deletion mutants when
possible. Whereas the gene knockout technology is not yet avail-
able for the squid host, such tools have been developed for its
symbiont. It is also advisable to perform autofluorescence and
nonspecific amplification controls for each experiment. In both
the host and the symbiont under study here, these controls re-
vealed that no observable fluorescence was present at the signal
amplification levels used. Finally, significant lysis of V. fischeri was
observed in the probe hybridization buffer originally reported by
Choietal. (12). V. fischeri cells suspended in this buffer lysed when
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FIG 5 The EsPgrp1/2 transcript level is elevated predominantly in the crypts by 24 h postcolonization. (A and B) Visualization of V. fischeri by labeling of the 16S
rRNA (green); (A" and B') expression of EsPgrp1/2 (red); (A" and B") visualization of host tissue by labeling the EsHsp90 transcript (blue), in which the label is
overlaid with the two other labels; (A, A’, and A") EsPgrp1/2 is expressed in the symbiotic (Sym.) crypt epithelium at 24 h postcolonization; (B, B’, and B”) in
contrast, its expression is undetectable in the crypts of aposymbiotic (Apo.) animals at the same stage of development. d, duct; a, antechamber; b, bottleneck; c,

crypt (as shown in Fig. 1).

heated to 65°C, the temperature used for probe prehybridization;
such a problem may be encountered when applying this method
to other marine or structurally sensitive bacteria. It was resolved
by diluting the probe hybridization buffer in which V. fischeri was
suspended 1:1 with mPBS. Surprisingly, it was determined that
buffer osmolarity was not the sole reason for the observed bacte-
rial lysis.

Our application of HCR-FISH revealed several interesting pat-

A

Il EsHsp90
1 16S rRNA
Il EsCaddp1

d

terns of gene expression in both the squid and its symbiont. Con-
stitutively expressed transcripts in both partners (i.e., E. scolopes
Hsp90 [EsHsp90] in the host and 16S rRNA in the bacteria) al-
lowed analysis of their colocalization as well as provided controls
for probe penetration. In the bacteria, the observed pattern of
luxA expression correlated well with that observed in previous
studies done with [ux promoter fusions and observations of squid
bioluminescence (18, 27). The host EsPgrp1/2 transcript is up-

FIG 6 Tracking of a host transcriptional response to the bacterial symbiont. The light organs from aposymbiotic (A) and symbiotic (B) animals at 24 h
postcolonization were labeled with three probes. EsHsp90 (blue) labels the light organ throughout, but EsCadDPI (red) is found only in the ducts (d) and
antechamber (a) adjacent to the V. fischeri (whose 16S rRNA is labeled green)-colonized crypts (c). (C) The EsCadDP]I signal is localized to the ducts and not the
epithelium in contact with the bacteria. Ant., anterior; Pos., posterior; cf, ciliated field (as in Fig. 1). Magnifications, X 10 (A and B) and X40 (C).
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regulated in cells in close proximity to the symbionts, similar to
the cells that secrete EsSPGRP?2 itself into the crypts (10). These
data provide evidence that the provision of this host protein into
the crypts is a process controlled at the level of gene transcription.
We also observed a highly localized response of the transcript for a
cadherin domain-containing protein, EsCadDP1, in the ducts and
antechambers (Fig. 6C). The spatial and temporal expression pat-
terns of these two genes suggest that the onset of symbiosis sets up
biochemically discrete regions of the light organ that reflect the
restriction of the symbionts to the crypt spaces. The family of
cadherin-like proteins comprises cadherins, protocadherins, and
atypical cadherins (28). While many proteins in this family are
involved in mechanical cell-cell adhesion, others function in cell
signaling pathways or are of unknown function. Bioinformatic
analysis of EsCadDP1 revealed only one cadherin domain; unlike
other cadherins, the domain is not repeated, nor does it possess a
cytoplasmic cadherin domain. The lack of repeating cadherin do-
mains calls into question the degree to which the protein encoded
by this transcript is capable of adhering to other cadherin domain-
containing proteins. Thus, while its function remains unknown,
EsCadDP1 is an excellent candidate for further study due to its
strong and cell-specific responses to the presence of the bacterial
symbionts.

HCR-FISH is a powerful technique for investigating gene ex-
pression within a model of symbiosis. By adapting the protocol
developed by Choi et al. (12) to the squid-vibrio model system, we
have demonstrated that this technique uniquely addresses specific
questions of host-symbiont responses. HCR-FISH provides sev-
eral advantages over previously available techniques. First, the use
by HCR-FISH of multiple probe/hairpin sequence combinations
within the same sample allows an investigation of the expression
patterns of several genes simultaneously both in the host and in
the symbiont population. As such, the number of transcripts
analyzed becomes limited only by the number of wavelengths that
can be detected on a particular microscope system. Second, as
illustrated in Fig. 5 and 6, HCR-FISH greatly increases the resolu-
tion at which transcriptional responses can be localized within
host tissue. Similarly, while promoter fusion constructs have al-
lowed the observation of symbiont gene activation (18, 19), they
rely on the presence of a strong native promoter to express a
fluorescent reporter and, thus, are unlikely to detect genes ex-
pressed at moderate or low levels. Our observations of small
amounts of a fluorescent signal from [uxA transcripts in a subpop-
ulation of cells at 6 h after exposure (Fig. 4A) show that Jux tran-
scription occurs at very low levels even at low cell densities. Pre-
vious promoter fusion studies of lux expression first showed a
detectable signal starting at 8 h after exposure (18). These results
are consistent with the higher sensitivity of HCR-FISH transcript
labeling. Furthermore, in promoter fusion experiments, the time
of appearance of the fluorescent signal lags behind the time of
transcriptional initiation, complicating the proper recognition of
regulatory cascades or development programs. Overall, HCR-
FISH provides researchers in the area of host-symbiont interac-
tions, both beneficial and pathogenic, with a tool that is a signifi-
cant improvement over previously available techniques.
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Supplemental Materials for:

Using hybridization chain-reaction fluorescent in situ hybridization (HCR-FISH)
to track gene expression by both partners during initiation of symbiosis

K. Nikolakakis, E. Lehnert, M.J. McFall-Ngai* and E.G. Ruby*

Whole-Mount In Situ Hybridization of Juvenile Hawaiian Bobtail Squid

using Hybridization Chain Reaction (HCR)

Modified from protocols by Lee, et al. (2009), and Choi, et al. (2014).

A. Solutions Needed

1) Filtered natural seawater or artificial Instant Ocean (Aquarium Systems, Mentor,
OH)

2) Marine PBS (mPBS) — 50 mM phosphate buffer, pH 7.4; 0.45 M NaCl

3) Permeabilization Buffer — mPBS containing 1% (v/v) Tween-20

4) 50% Hyb Buffer — DNA Hybridization Buffer (Molecular Instruments;
www.molecularinstruments.org) mixed 1:1 with mPBS

5) Probe Wash Buffer — Provided by Molecular Instruments

6) DNA Amplification Buffer — Provided by Molecular Instruments

7) 5X SSC (750 mM NacCl, 75 mM sodium citrate, pH 7)

8) 5X SSCr, — 5X SSC containing 0.05% Tween-20



B. Method
1. Collection and Fixation of E. scolopes
[1.1] Collect juvenile squid from hatching table (refer to colonization protocol as
needed) and isolate into collection cups. Colonize with desired V. fischeri strain.
[1.2] Anesthetize squid for 2 min by placing into 2% ethanol in filtered seawater.
[1.3] Under dissecting scope, split and peel back mantle on anterior side. Then
carefully pull back the funnel to expose the light organ.
[1.4] Place dissected squid into 4% paraformaldehyde (PFA) and incubate overnight
at 4 °C on shaker to fix. The best vessels to use are 1.5mL screw-cap vials, to

prevent leaking at later wash steps.

2. Permeabilization by Proteinase K

Use RNase-free equipment and solutions throughout the remainder of the protocol.
Perform all treatments, hybridizations, and washes in a 500-pL volume, on a
rotator/shaker, unless otherwise noted.

[2.1] Wash each sample five times (5 min per wash) with Permeabilization Buffer at
room temperature (RT).

[2.2] Treat with 0.01 mg/mL Proteinase K Permeabilization Buffer at RT for 15-20
minutes. Do not place on shaker or rotator.

[2.3] Stop the proteinase K digestion with two washes of 2 mg/mL glycine in
Permeabilization Buffer.

[2.4] Post-fix in Permeabilization Buffer with 4% PFA for 1 h at RT on the shaker.

[2.5] Wash with Permeabilization Buffer five times (5 min per wash).



Note: Permeabilized juveniles can be used immediately, or stored for no longer than

1 week at 4 °C in Permeabilization Buffer.

3. Pre-hybridization for Probes
[3.1] Remove as much of the Permeabilization Buffer as possible from the sample.
Incubate sample in 500 yL of 50% Hyb Buffer at 65 °C for 30 min.
[3.2] Change sample into 500 pL of fresh 50% Hyb Buffer, and incubate at 65 °C for
2.5 h.
Note: Prevent drying during prolonged incubations. When using petri plates, place
them in a humidified chamber or seal the cover of the plate with a strip of

parafilm.

4. Probe Hybridization
To identify possible artifacts and confounding effects, the following alternate sample
preparations should be performed:
a. Autofluorescence (AF) — Follow protocol but do not add probes (step 4) or hairpins
(step 7)
b. Non-Specific Amplification of hairpins (NSA) — Sample incubated without probes
(step 4) but with hairpins included.
c. Non-Specific Detection of targets (NSD) — This control is applicable only for (i)
transgenic (non-endogenous) targets, where a wild-type sample missing the target
transcript is treated using the same protocol, and with the test probes and hairpins;

or (i) non-ubiquitous endogenous target transcript, where the locus of expression



is known beforehand, and for which surrounding tissue can give an estimate of

NSD in the same sample after treatment.

[4.1] Mix 1 pmol of each probe in 500 uL of 50% Hyb buffer at 45 °C for 30 min (this
step should be coordinated with step [3.2] so that they are completed at the
same time).

[4.2] Remove the 50% Hyb buffer from [3.2], and add this probe solution to samples

for overnight (16 h) incubation at 45 °C.

5. Probe Washes

All solutions used here must be pre-warmed to 45 °C. Probe solution is not reused,
and hence discarded at the start of the washes.

[5.1] Wash samples in 500 yL Probe Wash Buffer for 15 min at 45 °C.

[5.2] Wash samples in 500 yL (75% of Probe Wash Buffer + 25% of 5X SSC) for 15
min at 45 °C.

[5.3] Wash samples in 500 yL (50% of Probe Wash Buffer + 50% of 5X SSC) for 15
min at 45 °C.

[5.4] Wash samples in 500 yL (25% of Probe Wash Buffer + 75% of 5X SSC) for 15
min at 45 °C.

[5.5] Wash samples 2 times, in 500 pL of 5X SSC for 15 min at 45 °C.

[5.6] Wash samples 2 times, in 500 pL of 5X SSC for 30 min at 45 °C.

6. Pre-hybridization for Hairpins



[6.1] Incubate samples in 500 uL of DNA Amplification Buffer at RT for 30 min.

[6.2] Incubate samples in fresh 500 yL of DNA Amplification Buffer at RT for 30 min.

[6.3] Aliquot 6 pmol (for every 100 uL of DNA Amplification Buffer) of each hairpin in a
separate PCR tube.

[6.4] Heat the hairpins to 95 °C for 90 sec (e.g., using a PCR machine/thermal
cycler).

[6.5] Store the heated hairpins in the dark for 30 min at RT (keep hairpins unmixed).

[6.6] Prepare 100 uL of fresh DNA Amplification Buffer equilibrated at RT.

(Steps [6.2] through [6.6] should be coordinated so that they are completed at the

same time for all samples)

. Hairpin Amplification

[7.1] Mix all hairpins in 100 pL of pre-equilibrated DNA Amplification Buffer at RT.
(Final concentration of each hairpin is 60 nM.)
Note: The volume of this incubation can be scaled up if needed (i.e., for high-
abundance squid transcripts); however, the hairpin concentration must be kept
constant.

[7.2] Remove final wash solution from [6.2] and add the hairpin solution to the
samples for an overnight (16 h) incubation at RT.

[7.3] Wrap the sample tubes (or incubation oven) in aluminum foil to keep light out.

. Hairpin Washes

Note: All solutions used here must be pre-equilibrated to RT.



[8.1] Wash samples 4 times, in 500 pL of 5X SSCy,, for 5 min each at RT

[8.2] Wash samples 2 times, in 500 pL of 5X SSCy,, for 30 min each at RT

9. Imaging
[9.1] Samples can be imaged directly in 5X SSCry, or stored in 5X SSCqy, at 4 °C.
Note: The processed samples can be counterstained with phalloidin or wheat

germ agglutinin following standard protocols.



Table S1

Probe Sequences

Probe Hairpin (2)/Fluorophore Probe Sequence

V. fischeri 16S probe #1 | B3/ Alexa488 5'-
TGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAATCTTGCGACCGTACTC

V. fischeri 16S probe #2 | B3/ Alexa488 5'-
GTAGGTAAGGTTCTTCGCGTTGCATCGAATTAAACCACATGCTCCACCGC

V. fischeri luxA probe #1 | B4 / Alexa546 5'-
GAAAGTTGATCTAACAGCAATACATCCTCTGCTTGCCGTACGGGGTGAGC

V. fischeri luxA probe #2 | B4 / Alexa546 5'-
CCAACTAAGTACCATTGGCATCCCTTGCCTTGCTAGCCACTCAGTAGTAC

V. fischeri luxA probe #3 | B4 / Alexa546 5'-
CTGATCAAGAACTTCCGACATACCTCACGAGCTCTATCCCCATCTTCGTG

V. fischeri luxA probe #4 | B4 / Alexa546 5'-
CGCTGAATAATCTCAAGGCACTCTGCAGGAGTTCCAACAGGATTAAGTCC

V. fischeri luxA probe #5 | B4 / Alexa546 5'-
TCAGTGCCATTAGCCTCAAAACCACAGGTGACGTTAGTAATACCAGTCGC

E. scolopes Actin probe | B1/ Alexa488 5'-

#1 CCGTGTTCAATGGGGTATTTCAAGGTAAGGATACCTCTCTTGCTCTGGGC

E. scolopes Actin probe | B1/ Alexa488 5'-

#2 CGACACGGAGCTCGTTGTAGAAGGTGTGATGCCAGATTTTCTCCATGTCA

E. scolopes Actin probe | B1/ Alexa488 5'-

#3 CTGGATGGCAACATACATGGCGGGAGCGTTGAAGGTCTCGAACATGATTT

E. scolopes Actin probe | B1/ Alexa488 5'-

#4 TTCATAGATGGGTACAGTGTGGGTGACACCATCGCCGGAGTCAAGAACAA

E. scolopes Actin probe | B1/ Alexa488 5'-

#5 ACGTTCGGTCAAGATCTTCATGAGGTAGTCAGTAAGATCACGTCCGGCCA

E. scolopes HSP90 #1 B5 / Alexa628 5'-
TCCAGATGTTTCTTGGCTGCCATATATCCCATCGTTGAGGTGTCTCGCAG

E. scolopes HSP90 #2 B5 / Alexa628 5'-
TATCAGCATCCACTTTCTCCTTCAGGGATTTGATGATAGGGTGGTCGGGG

E. scolopes HSP90 #3 B5 / Alexa628 5'-

TCATCATCTTCCAAAGGTGGGAGTTCAGCATCAACAGAGTCTCCTGCTCC




E. scolopes HSP90 #4 B5 / Alexa628 5'-
GCTGGATCAGTTTTTGGAACCTACACCAATTCCGCAATGATACGCAGCGC

E. scolopes HSP90 #5 B5 / Alexa628 5'-
TTTTTTTTCCGTTAGCAGTCACCTCTTTCAGACCCAAGCTCTAGCCGCGC

E. scolopes PGRP1/2 #1 | B2 / Alexa546 5'-
CGTATTTTTACCGCAGTCGAGATGGCGCTCTTTACGAATGATGGGAGGTC

E. scolopes PGRP1/2 #2 | B2 / Alexa546 5'-
CCGTTTCTTCTTTCGTTGCTGTTCTGCCTACTAGACGAGCGATTTGCTGG

E. scolopes PGRP1/2 #3 | B2 / Alexa546 5'-
AGGGTAACGCCTTTACAGGTGCCATTTCCGAAACTGCAAGCTGAGGACAT

E. scolopes PGRP1/2 #4 | B2 / Alexa546 5'-
AACCATTTTGACGGGCATCGGTATAGAAACGACTTCTTTGGGTGGACGCG

E. scolopes PGRP1/2 #5 | B2 / Alexa546 5'-
GCCGATATCGAACCATCCTCGGTCGTCCATATGAAAGTTCTGGATTTTTC

E. scolopes EsCadDP1 B2 / Alexa546 5'-

#1 AGGATCCATGGCTGTGCATGGTTCCTCTGCTGCATACCCTGATGTAATCA

E. scolopes EsCadDP1 B2 / Alexa546 5'-

#2 TAGGTCGAATTCCGGCATCTGGTCATCTCCATCGATCACTGTCAGGTTCA

E. scolopes EsCadDP1 B2 / Alexa546 5'-

#3 TAGCAGCCATCGAGTCTCCATCTTTCGCTTTGATTTGCATTGCTGGACCC

E. scolopes EsCadDP1 B2 / Alexa546 5'-

#4 GTAGACAACTGTTCCGACCAGGTCCGACTTATCAACGGGTTTCACCATAC

E. scolopes EsCadDP1 B2 / Alexa546 5'-

#5

GGGGAAAACACTCATAATCGGATCACAAGCTCATCCCCTCATTGACATGC




[l phalloidin
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Figure S1. Tracking the position of bacteria during colonization. For all images, colonizing bacteria were
labeled by probes to the 16S ribosome (green), and squid tissue was stained with 633-phalloidin (blue); panel
X' represents a higher magnification (40X) image of the area in the dashed box for the light organ in X (10X).
Prior to exposure (A, A') no bacteria are visible within the light organ. By 3 h after exposure (B, B'), bacteria
(arrows) have associated with the host tissue, and are visible within the light-organ ducts, located
immediately interior of the pores. After 6 h of exposure (C, C'), bacteria have migrated into the light organ
and begun to colonize the crypt space. By 24 h (D, D'), the host is bioluminescent, and bacteria are visible
throughout the crypts.
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Figure S2. Validation of the specificity of the luxA probe. For all images, panel X shows labeling of the
transcript for the bacterial 16S ribosomal subunit (green), panel X' shows labeling of the luxA transcript, and
panel X" shows host tissue labeled for HSP90 transcript (blue) overlaid with the two bacterial labels. (A)
Wild-type V. fischeri were used to colonize squid, and samples were collected at 24 h post-inoculation, at
which time the symbionts were fully bioluminescence. (B) Alternatively, Alux V. fischeri were used to colonize
squid, and sampled at the same time point.
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	Abstract | The recent development and application of molecular genetics to the symbionts of invertebrate animal species have advanced our knowledge of the biochemical communication that occurs between the host and its bacterial symbionts. In particular, the ability to manipulate these associations experimentally by introducing genetic variants of the symbionts into naive hosts has allowed the discovery of novel colonization mechanisms and factors. In addition, the role of the symbionts in inducing normal host development has been revealed, and its molecular basis described. In this Review, I discuss many of these developments, focusing on what has been discovered in five well-understood model systems.
	Figure 1 | Microbial symbioses occur throughout the phylogeny of animals. Experimentally accessible associations, including several that are described in this Review, occur in all the main phylogenetic groups. These associations span the breadth of animal diversity, and are represented in cellular-grade, tissue-grade and organ-grade levels of developmental and morphological complexity.
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	Figure 2 | Classes of symbiosis models. Experimental models of microbial symbioses can be characterized into three types. Gnotobiotic systems (a) have been useful for examining the interactions within the complex consortia that are normally present in vertebrate enteric tracts. In these systems, germ-free host animals are produced, and one or a few bacterial species are introduced to allow an examination of a simplified relationship. An alternative approach is to investigate consortia of invertebrates (b), which are often simpler in species composition. Finally, there are several natural animal models (c) in which only a single bacterial species is present.
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	Figure 3 | Simplified life cycles of five symbioses. In each of the symbioses shown, the animal obtains a specific symbiont (or symbionts), which colonizes the host in a particular location. a | The squid obtains its symbionts from sea-water populations, which colonize the nascent light organ. b | The nematode brings its symbiont into the insect host, where both proliferate. The bacteria then recolonize the nematodes, which escape from the carcass. c | Juvenile leeches obtain symbionts after hatching from their cocoon (perhaps from the cocoon itself). They then take up residence in the crop, where they digest the blood meal. d | The tsetse fly can either pass the symbionts maternally to the eggs or pick up new strains from the environment. Specific symbionts on the food of the fruit fly colonize and persist in the enteric tract.
	Figure 4 | Categories of colonization mutants. Microbial symbionts that are passed horizontally must negotiate several stages of the colonization process. Studies of genetically engineered mutant strains have revealed defects that can be placed in one of several classes. In this example, inoculation with a wild-type strain from the environment allows a few symbionts to colonize, which grow to a specific population size that is then stably maintained over time. Three broad classes of defects have been discovered in several symbiotic systems: initiation mutants, which are unable to inoculate the host; accommodation mutants, which fail to reach the usual population size; and persistence mutants, which at first colonize normally, but are unable to maintain themselves.
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