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Summary

Cells acclimate to fluctuating environments by utiliz-
ing sensory circuits. One common sensory pathway
used by bacteria is two-component signaling (TCS),
composed of an environmental sensor [the sensor
kinase (SK)] and a cognate, intracellular effector [the
response regulator (RR)]. The squid symbiont Vibrio
fischeri uses an elaborate TCS phosphorelay contain-
ing a hybrid SK, RscS, and two RRs, SypE and SypG,
to control biofilm formation and host colonization.
Here, we found that another hybrid SK, SypF, was
essential for biofilms by functioning downstream of
RscS to directly control SypE and SypG. Surprisingly,
although wild-type SypF functioned as an SK in vitro,
this activity was dispensable for colonization. In fact,
only a single non-enzymatic domain within SypF, the
HPt domain, was critical in vivo. Remarkably, this
domain within SypF interacted with RscS to permit a
bypass of RscS‘s own HPt domain and SypF‘s enzy-
matic function. This represents the first in vivo
example of a functional SK that exploits the enzy-
matic activity of another SK, an adaptation that dem-
onstrates the elegant plasticity in the arrangement of
TCS regulators.

Introduction

For organisms to survive, they must appropriately respond
to the assorted environments they experience. To do this,
they use signaling pathways that link environmental
signals with relevant intracellular outputs. One type of
cellular circuitry found in most bacteria, some archaea and
a few eukaryotic species is the two-component signaling
(TCS) pathway (reviewed in Stock et al., 2000; Wuichet
et al., 2010). The basic TCS architecture consists of two
types of proteins: a sensor kinase (SK) and a response
regulator (RR). Typically, a specific environmental ligand

binds a cell membrane-bound SK, which autophosphor-
ylates on a conserved histidine within a HisKA domain
using adenosine triphosphate (ATP) as the phosphoryl
donor. It then donates this phosphoryl group to a con-
served aspartate in the REC (receiver) domain within a
cognate RR, an event that is catalyzed by the enzymatic
activity of the REC domain. Often, the RR has an effector
domain, such as a DNA-binding or enzymatic domain,
whose activity is activated or deactivated once the REC
domain becomes phosphorylated (Galperin, 2010). This
two-protein arrangement connected by a single His-Asp
phosphotransfer event remains the most common TCS
architecture found in bacteria; however, some TCS path-
ways consist of a phosphorelay involving more than one
phosphotransfer event (His-Asp-His-Asp) between two or
more TCS proteins. Often, these phosphorelays include a
‘hybrid’ SK, which contains a second site of phosphoryla-
tion within a covalently attached REC domain. Some
hybrid SKs also possess a third site of phosphorylation, a
histidine within a C-terminal histidine-containing phospho-
transfer (HPt) domain. To date, most hybrid SKs with
autokinase activity require these additional sites of phos-
photransfer to effectively donate the phosphoryl group to
their cognate RR (Tsuzuki et al., 1995; Uhl and Miller,
1996; Jourlin et al., 1997; Takeda et al., 2001; Hsu et al.,
2008). It is believed that these extra phosphotransfer
events represent checkpoints that control whether a cell
initiates physiological changes under particular conditions
(Uhl and Miller, 1996; West and Stock, 2001; Jung et al.,
2012).

One developmental process in bacteria that is often
governed by TCS circuits is the formation of biofilms, or
matrix-encased communities of cells (Hamon and
Lazazzera, 2001; Li et al., 2002; Ferrieres and Clarke,
2003; Irie et al., 2004; Zhang et al., 2004; Gooderham and
Hancock, 2009; Petrova and Sauer, 2009; Huang et al.,
2013; Stipp et al., 2013; Su and Ganzle, 2014). It is
believed that environmental signals can activate or deac-
tivate specific TCS pathways to disfavor the independent,
planktonic state and favor the assembly of a community
(Ventre et al., 2006; McLoon et al., 2011; Mulcahy and
Lewenza, 2011). Environments that induce biofilm devel-
opment can include host tissues, where these communi-
ties are implicated in initiation and persistence of
colonization by both pathogenic and commensal bacteria
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(reviewed in Ramey et al., 2004; Yildiz and Visick, 2009;
Joo and Otto, 2012; Heindl et al., 2014; Percival and
Suleman, 2014). One unique model system used to study
biofilms in the context of a natural host is the symbiosis
between the bacterium, Vibrio fischeri, and the Hawaiian
bobtail squid, Euprymna scolopes (reviewed in Stabb and
Visick, 2013; McFall-Ngai, 2014). Successful colonization
requires that V. fischeri cells form and disperse from a
biofilm to enter the symbiotic organ, known as the light
organ (Nyholm et al., 2000; Yip et al., 2006). This biofilm
depends on the production of the symbiosis polysaccha-
ride (Syp PS) generated by proteins encoded by the
18-gene syp locus (Yip et al., 2006; Shibata et al., 2012).
Control over Syp production occurs via a complex TCS
cascade. Previous work indicated that the hybrid SK,
RscS, senses an unknown signal that leads to the phos-
phorylation of two downstream RRs, SypE and SypG
(reviewed in Visick, 2009) (Fig. 1A). SypG functions as a
transcription factor to directly promote transcription of the
syp locus, while SypE functions downstream of syp tran-

scription to control production of Syp PS (Yip et al., 2005;
Morris et al., 2011; Morris and Visick, 2013; Ray et al.,
2013). Both sypE and sypG are located within the syp
locus, whereas rscS is located elsewhere in the chromo-
some and is proposed to be horizontally acquired (Visick
and Skoufos, 2001; Yip et al., 2005; Mandel et al., 2009).
The current model is that, after its acquisition, RscS gained
the ability to activate SypG and inactivate SypE,
thus allowing V. fischeri to utilize Syp for colonization of
E. scolopes.

RscS may not be the only SK that regulates the Syp
pathway. Located between the RR genes sypE and sypG
is an additional hybrid SK gene, sypF (Fig. 1), a genetic
configuration that is typical for TCS proteins that function
together. Indeed, our previous work suggested that SypF
could control biofilm formation: although overproduction
of wild-type SypF had no effect on biofilms, overproduc-
tion of an active variant of SypF, termed SypF*, induced
biofilm formation (Darnell et al., 2008). This variant con-
tained two mutations, one of which was located three
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Fig. 1. Syp biofilm regulation. Biofilm formation and host colonization by Vibrio fischeri are controlled by a complex two-component signaling
(TCS) pathway.
A. Previous model: the hybrid sensor kinase (SK), RscS, functions upstream of two response regulators (RRs), SypE and SypG, to promote
biofilm formation on agar plates (depicted as a wrinkled colony) and biofilm formation during colonization (represented by an image of a squid,
the host for V. fischeri). Phospho-SypG functions as a transcription factor to activate the transcription of the syp locus at four promoters, and
SypE inhibits biofilms at a level below syp transcription. When phosphorylated, SypE is no longer inhibitory. The sypE and sypG genes reside
within the syp locus. Between sypE and sypG lies an additional hybrid SK gene, sypF, with an unclear role in biofilms.
B. Revised model: the C-terminal HPt domain of SypF functions between RscS and the two RRs, SypE and SypG, thus bypassing the
requirement for the C-terminal domain of RscS. The faded colors indicate domains found to be non-essential for wrinkled colony formation and
colonization.
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amino acids upstream from the conserved site of phos-
phorylation (Fig. 2A) (Darnell et al., 2008). However, it
remained unknown whether the phenotype of SypF* was
physiologically relevant, whether SypF had any role in
host colonization or how input from two SKs (an unusual
arrangement for TCS pathways), SypF and RscS, might
dictate the control of biofilms.

In this study, we found that SypF is critical for biofilm
formation and host colonization by functioning as the direct
donor of phosphoryl groups to the downstream RRs SypE
and SypG. Surprisingly, although SypF could autophos-
phorylate in vitro, only one non-enzymatic domain of SypF
was required for biofilms and colonization. Instead of its
own enzymatic domains, SypF relied on the catalytic activ-
ity of the upstream SK, RscS, to control biofilms and
colonization. SypF thus represents the first example of a
hybrid SK that has the ability to function as a histidine
kinase, yet forfeits this activity to an upstream SK. This
interaction between the recently acquired RscS protein
and the more conserved SypF protein demonstrates the
flexibility of TCS architectures, and provides insight into
how these regulatory circuits might evolve to allow a bac-
terium to take advantage of a new niche, such as host
tissues.

Results

SypF* functions as a canonical hybrid SK

In culture, biofilm formation by V. fischeri is induced upon
overproduction of any of three TCS proteins: the SK RscS,
the RR SypG (in the absence of inhibitory RR protein
SypE) and a mutant version of the SK SypF (SypF*) (Yip
et al., 2006; Darnell et al., 2008; Hussa et al., 2008). Our
long-standing model proposes that RscS directly controls
SypG and SypE (Fig. 1A). As a result, the role of SypF in
controlling biofilm formation has been unclear, especially
because overproduction of only SypF*, but not wild-type
SypF, could induce biofilm formation (Darnell et al., 2008).
Two mutations exist within SypF* (S247F and V439I). The
former is located three residues away from the predicted
site of autophosphorylation (H250) (Fig. 2A). In this posi-
tion, the substitution of the small serine side chain with the
bulky phenylalanine side chain could affect the ability of
H250 to be phosphorylated. Thus, it was inferred that
SypF* exists in a kinase ‘active’ conformation (Darnell
et al., 2008). This result, along with the strong conservation
of sequences known to catalyze kinase and phosphotrans-
fer reactions (Supporting Information Fig. S1A and B),
suggested that SypF* functions as an SK. To test this
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Fig. 2. Function of SypF* as an SK.
A. Cartoon of the predicted functional domains within SypF, including HAMP, HisKA, HATPase_c, REC and HPt domains (orange boxes) as
well as transmembrane regions (gray boxes) flanking a putative periplasmic loop. Conserved putative sites of phosphorylation are indicated
below in black type. SypF* contains two mutations. The critical mutation, S247F, is indicated in pink type.
B. Autoradiograph of purified MBP-SypF* (above) and wild-type MBP-SypF (below) after incubation with unlabeled ATP or [γ-32P]-ATP.
C. Colony morphology of wild-type Vibrio fischeri strain ES114 containing vector control (VC) (pKV69) or various SypF and SypF*
overproduction plasmids as follows: pSypF (pCLD54), pSypF* (pCLD29), pSypF*D549A (pANN61) and pSypF*H705Q (pANN62). Cultures of
the indicated strains were spotted on agar plates and colony morphology was assessed after 24 h.
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hypothesis, we purified the cytoplasmic portion of SypF*,
assessed whether it could autophosphorylate in vitro and
found that it could under the tested conditions (Fig. 2B).

To determine if SypF* could function as a hybrid SK, we
tested whether biofilm formation required predicted sites of
phosphorylation in the REC (D549) and HPt domains
(H705) (Fig. 2A). We generated individual mutations of
D549 and H705, overexpressed these mutant alleles in
otherwise wild-type cells and assessed the ability of the
resulting strains to form wrinkled colonies, an in vitro
indicator of biofilm formation. Whereas cells that over-
produced SypF* (pSypF*) formed wrinkled colonies, those
containing either pSypF*D549A or pSypF*H705Q formed
smooth colonies (Fig. 2C). Thus, similar to canonical
hybrid SKs, SypF* required these sites of phosphorylation
to function.

To confirm that the SypF* variants were produced, we
generated constructs that produced FLAG epitope-tagged
versions of SypF*, SypF*D549A or SypF*H705Q, as well as two
additional mutants, SypF*H250Q (in the HisKA domain) and
SypFS247F (containing only one of the two mutations present
in SypF*). We then used western blot analysis to assess
the levels of these proteins and colony morphology to
assess their ability to induce biofilm formation. Importantly,
we found that the steady-state levels of all these SypF

variants were similar (Supporting Information Fig. S2B).
However, the FLAG tag somewhat diminished the
biofilm-inducing activity of SypF* (Supporting Information
Fig. S2A, compare pSypF* to pSypF*-FLAG). Regardless,
the H250Q, D549Aand H705Q mutants failed to induce the
formation of wrinkled colonies. In contrast, the SypFS247F

mutant promoted wrinkled colony development to approxi-
mately the same extent as SypF*, demonstrating that
this substitution was sufficient for the activity of SypF*.
Together, our data support the hypothesis that SypF* func-
tions as a canonical hybrid SK.

sypF is required for biofilm formation and
syp transcription

We next asked where SypF might function in the Syp
pathway to control biofilm formation. We first determined
where it functioned relative to RscS, the other hybrid SK. To
do this, we deleted sypF from the chromosome and
assessed whether this affected the ability of RscS to
induce wrinkled colonies. Whereas RscS overproduction
induced the formation of wrinkled colonies by the wild-type
strain, it failed to do so in the sypF mutant, which formed
smooth colonies indistinguishable from the vector control
(Fig. 3A). Complementation of the sypF deletion with a
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Fig. 3. Role of SypF in RscS-induced biofilm formation and syp transcription. RscS-induced (A) biofilm formation and (B) syp transcription
were assessed by overproducing RscS from a plasmid (pARM7).
A. Colony morphology of wild-type (WT) cells (KV4389), a ΔsypF strain (KV6921) or the complemented ΔsypF strain (KV6659). These cells
contained either vector control (VC) (pKV282) or pRscS, as is indicated in the figure. Cultures of the indicated strains were spotted on an agar
plate and colony morphology was assessed after 39 h.
B. PsypA-lacZ reporter activity in WT cells, in the ΔsypF strain and in ΔsypF strains producing the SypF proteins. The strains used for this
experiment contained either VC or pRscS as indicated in the figure. The PsypA-lacZ reporter base strains used are as follows: WT (KV7410),
ΔsypF (KV7412), ΔsypF sypF+ (KV7386), ΔsypF sypFH705Q (KV7387), ΔsypF sypF-HPt (KV7377) and ΔsypF sypF-HPtH705Q (KV7413). Error
bars represent the standard deviation.
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wild-type copy of sypF in single copy restored wrinkled
colony formation. These data suggest that SypF works
below RscS in the regulatory hierarchy.

Because RscS-induced biofilm formation required sypF,
we asked whether RscS-induced syp transcription would
similarly require sypF. Thus, we evaluated the impact of the
sypF deletion on the activity of a PsypA-lacZ reporter. In the
wild-type background, RscS induced expression of the
PsypA-lacZ reporter relative to the vector control. In the sypF
deletion background, however, RscS failed to induce the
reporter (Fig. 3B). Finally, provision of the wild-type sypF
allele in trans complemented the defect. We conclude that
RscS requires SypF to induce syp transcription, and
propose a model wherein SypF functions downstream of
RscS in the Syp TCS pathway (Fig. 1B).

SypF directly controls SypG and SypE

RscS is proposed to act upstream of two RRs, SypG and
SypE (Yip et al., 2006; Hussa et al., 2008; Morris et al.,
2011). We thus asked whether SypF functioned between

RscS and one or both of these downstream RRs (Fig. 1B).
Because RscS required SypF to promote syp transcription,
we first asked if SypF functions above SypG, the direct
transcriptional activator of the syp locus (Ray et al., 2013).
If so, then it should be possible to bypass the requirement
for sypF using an active SypG variant that no longer
requires activation by an SK. We generated strains that
produced SypG*, a SypG protein in which the conserved
site of phosphorylation (aspartate 53) was converted to a
glutamate. This mutation mimics the phosphorylated state
of other RRs (Sanders et al., 1989; 1992; Freeman and
Bassler, 1999) and has been shown to increase the activity
of SypG (Hussa et al., 2008). Indeed, single-copy expres-
sion of sypG* was sufficient to induce syp transcription in
the wild-type background (Fig. 4A) and in the absence of
sypF (Fig. 4A). These data support a model in which SypF
functions between RscS and SypG to control syp transcrip-
tion (Fig. 1B).

RscS also functions upstream of SypE, the RR that
controls biofilms below syp transcription; phosphorylation
of SypE switches off its inhibitory activity, thus allowing
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Fig. 4. Determining where SypF functions in the Syp pathway.
A. SypG*-induced PsypA-lacZ reporter activity in wild type (WT) (KV7230) or ΔsypF (KV7231) strains. Error bars represent standard deviation.
B. Wrinkled colonies of WT Vibrio fischeri strains producing SypG* (KV6527) with vector control (VC) (pKV282) or pRscS (pARM7) (top two
panels) and of pRscS, SypG*-producing ΔsypF (KV6526) and ΔsypE ΔsypF (KV6586) strains (bottom two panels). Cultures were spotted and
colony morphology was assessed after 19 h.
C. In vitro phosphotransfer assay. Left two lanes: GST-SypE or MBP-SypG-REC incubated with radiolabeled ATP. Right three lanes:
phospho-SypF* incubated with or without GST-SypE or MBP-SypG-REC.
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biofilms to develop (Morris et al., 2011) (Fig. 1A). To deter-
mine if SypF also functions upstream of SypE, we evalu-
ated RscS-induced wrinkled colony formation in a SypG*-
producing sypF deletion strain like the one used above.
Because expression of sypG* overcomes the requirement
for SypF in syp transcription, we anticipated that this strain
would produce wrinkled colonies only if SypF is not also
required to inactivate SypE. As controls, we evaluated the
production of wrinkled colonies by sypF + cells. As pre-
dicted from previous work (Hussa et al., 2008), single-copy
expression of sypG* in an otherwise wild-type background
failed to induce wrinkled colony formation because of
inhibition by SypE; however, expression of both rscS and
sypG* in wild-type cells induced wrinkled colony formation
(Fig. 4B). This demonstrates that in this strain background,
rscS expression is sufficient to turn off the inhibitory activity
of SypE. In contrast, expression of both rscS and sypG*
in the sypF mutant failed to induce this phenotype. This
observation suggests that sypF has an additional role
in promoting biofilms, potentially by inactivating SypE.
Indeed, a sypE sypF double mutant formed wrinkled colo-
nies with rscS and sypG* expression (Fig. 4B). We infer
from these data that RscS works through SypF to control
the activities of both SypG and SypE (see model in
Fig. 1B).

To more directly assess the ability of SypF to interact with
and control SypG and SypE, we evaluated whether SypF
could donate phosphoryl groups to these RRs in vitro. We
purified the REC domain of SypG and the full-length form of
SypE, and added these purified proteins to reactions con-
taining phosphorylated SypF*. In support of the genetic
data, we detected phosphorylated forms of SypE and
SypG-REC after incubation with phospho-SypF* (Fig. 4C).
These data indicate that SypF can directly interact with and
phosphorylate these two RR proteins.

RscS-induced biofilm formation does not require
conserved SypF residues

The above evidence indicates that RscS functions through
SypF to control the activity of SypG and SypE. This is an
unusual regulatory setup for TCS systems with multiple
SKs; thus, the mechanism by which SypF functions after
RscS to control biofilms remained unclear. Specifically, we
wondered if wild-type SypF could function as an SK like
SypF* and, if so, if that SK activity was necessary for
RscS-dependent activation of the pathway. To answer the
first question, we purified the cytoplasmic portion of wild-
type SypF and assessed whether it could autophosphor-
ylate in vitro. Indeed, in the presence of radiolabeled ATP,
SypF exhibited autophosphorylation activity (Fig. 2B).

To determine whether RscS-induced biofilm formation
requires SypF to function as an SK, we generated muta-
tions in each predicted site of phosphorylation of wild-type

SypF. We then assessed whether the mutant proteins
could complement the sypF mutant for wrinkled colony
formation. As shown previously (Fig. 3A), overproduction
of RscS in the sypF mutant failed to induce biofilm forma-
tion (Fig. 5A), but this defect could be restored with a
wild-type copy of sypF expressed in single copy from the
chromosome. Surprisingly, mutating the first conserved
histidine (H250Q), the conserved aspartate (D549A) or
both together (H250Q D549A) did not negatively impact
complementation: strains with these proteins retained their
ability to form wrinkled colonies (Fig. 5A). However, a SypF
mutant disrupted for all three putative sites of phospho-
transfer (H250, D549 and H705) failed to promote wrinkled
colony formation, indicating that the last site of phospho-
transfer may be required under these conditions. Indeed,
SypFH705Q, which contained a single substitution in the
conserved site of phosphorylation within the HPt domain,
did not complement the sypF deletion (Fig. 5A).Analogous
results were seen when assessing whether this mutant
protein could complement a sypF deletion for syp tran-
scription (Fig. 3B). Finally, we observed similar steady-
state levels for epitope-tagged versions of the wild-type
and mutant SypF proteins via western blotting (Supporting
Information Fig. S2C). Thus, the negative results for
SypFH705Q and the triple mutant were not due to gross
protein instability. Together, these data indicate that
SypF does not function as a canonical hybrid SK under
RscS-induced wrinkled colony development. Instead,
SypF appears to require only H705 within its HPt domain to
function.

RscS requires only the HPt domain of SypF

Because RscS-induced biofilm formation and syp tran-
scription only required H705 in SypF, but not H250 or
D549, we wondered whether the domain that contains
H705, the HPt domain, was sufficient to promote these
phenotypes. Indeed, sypF in other Vibrio species encodes
a single HPt domain rather than a full-length SK (Support-
ing Information Fig. S3). We thus cloned this domain and
assessed complementation. We found that the HPt
protein alone permitted RscS-induced biofilm formation
(Fig. 5B) and syp transcription in a sypF deletion mutant
(Fig. 3B). In contrast, when the HPt domain contained a
mutation in the site of phosphorylation, it did not comple-
ment the sypF deletion. These data suggest that the HPt
domain in SypF is the sole domain to engage in phospho-
transfer reactions that control biofilm formation induced by
RscS.

RscS directly utilizes the HPt domain of SypF

The requirement for only the HPt domain of wild-type SypF
was surprising because single-domain HPt proteins do not
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exhibit enzymatic activity. Therefore, they must receive a
phosphoryl group from an upstream protein to donate
phosphoryl groups to downstream RRs. Interestingly, pre-
vious data suggested that RscS, a hybrid SK with three
predicted sites of phosphorylation, did not require the last
site of phosphorylation in its HPt domain to promote bio-
films (Geszvain and Visick, 2008). Thus, we hypothesized
that RscS donates phosphoryl groups to the HPt domain of
SypF, which then passes phosphoryl groups to the two
downstream RRs, SypG and SypE (Fig. 1B). To test this

hypothesis, we generated a chimeric protein that con-
tained the N-terminal portion of RscS (lacking its HPt
domain) and the C-terminal HPt domain of SypF (Fig. 6A.).
We introduced the plasmid that produces this chimera into
wild-type and sypF deletion backgrounds, and then
assessed whether the chimeric protein was sufficient to
induce biofilms even in the absence of sypF. In accordance
with our hypothesis, the chimera induced wrinkled colonies
in both backgrounds (Fig. 6B). Together, these data
suggest that neither RscS nor SypF require the full com-
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A. RscS-induced (pARM7) wrinkled colony formation in WT cells or sypF deletion strains with or without sypF alleles expressed in single copy.
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B. RscS-induced (pARM7) wrinkled colony phenotype of a ΔsypF strain (KV6291), or the ΔsypF strain containing full-length sypF (KV6659),
sypF-HPt (KV7226) or sypF-HPtH705Q (KV7485) after 39 h.
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plement of their own phosphotransfer domains, but instead
rely on each other for the signal transduction that leads to
biofilm formation.

Requirement for SypF during host colonization

Our ability to assess the function of SypF in culture
depends on the plasmid-based production of regulators
such as RscS and SypF*. Use of those two different
regulators, however, yielded conflicting results about how
SypF regulates biofilms. More specifically, SypF* required
all three sites of phosphorylation to induce wrinkled
colony formation, whereas RscS-induced phenotypes
only required a single conserved site of phosphorylation
within the HPt domain of SypF. We thus wanted to define
a clear role for SypF and its putative enzymatic domains
during biofilm formation using a more physiologically rel-
evant approach. To do this, we assayed the importance of
sypF and its conserved sites of phosphorylation for V. fis-
cheri to colonize its squid host. Importantly, colonization
is an in vivo phenotype that requires biofilm formation,
but does not rely on the overproduction of regulatory
proteins.

We first assessed the requirement of sypF for this phe-
notype by incubating the sypF deletion mutant with apo-
symbiotic squid for 18 h and then determining the number

of V. fischeri cells in each squid. As expected, wild-type
V. fischeri could colonize; however, the sypF mutant
exhibited a severe colonization defect that could be com-
plemented by providing wild-type sypF in single copy in
trans (Fig. 7A and B). This evidence indicates that sypF is
required for host colonization.

We next identified the domains/amino acids within SypF
that are important for host colonization. We found that,
similar to the RscS-induced wrinkled colony experiments,
cells that produced SypFH250Q or SypFD549A successfully
colonized the squid whereas cells producing SypFH705Q did
not (Fig. 7A and B). Additionally, production of the HPt
domain of SypF alone allowed the sypF deletion mutant to
colonize E. scolopes unless the HPt domain contained a
mutation within the site of phosphorylation (Fig. 7B).
These results indicate that SypF does not function as an
SK to promote colonization, and that the RscS-induced
wrinkled colony phenotype is more physiologically rel-
evant than the SypF*-induced phenotype.

Finally, to confirm our findings that RscS and SypF
function in an unusual phosphorelay to promote biofilm
formation, we asked whether the rscS-sypF chimera,
expressed from the chromosome of a double rscS sypF
mutant, was proficient to promote colonization. Because
rscS and sypF are individually required for colonization
(Visick and Skoufos, 2001) (Fig. 7A and B), it was not
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in the Syp biofilm pathway.
A. Cartoon image comparing the predicted
functional domains of RscS (brown: PAS,
HisKA, HATPase_c, REC, Hpt), SypF
(orange: HAMP, HisKA, HATPase_c, REC,
HPt) and an RscS-SypF chimera that contains
the N-terminal regions of RscS and the HPt
domain of SypF. Gray boxes indicate
transmembrane regions that flank a putative
periplasmic domain.
B. Wrinkled colony formation of wild-type
(WT) (ES114) or sypF deletion (KV5367) cells
overproducing RscS (pARM7) or the
RscS-SypF chimera (pANN69). Indicated
strains were spotted and grown for 22 h.
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surprising that the rscS sypF double mutant failed to colo-
nize the squid, and introducing either rscS or sypF alone
into this strain did not restore host colonization (Fig. 7C).
However, in support of our model for biofilm regulation,
the chimeric allele mostly complemented the rscS sypF
mutant for colonization. Together, these data confirm that
the HPt domain of SypF functions between RscS and
SypG/SypE to control biofilms, and that the enzymatic
activity of SypF is largely dispensable for this signaling
cascade during host colonization.

Discussion

TCS is a common mechanism that bacteria use to link
environmental signals with an intracellular response.At the

apex of these pathways is the SK, a receptor that senses
an environmental ligand to initiate physiological changes
within the cell. Bioinformatic analyses readily identify SK
proteins based on highly conserved enzymatic residues
involved in histidine autokinase activity (Nixon et al., 1986;
Kofoid and Parkinson, 1988; Stock et al., 1988; Kim and
Forst, 2001). Canonical SKs containing a single phospho-
rylatable residue, the site of histidine autophosphorylation,
are predicted in most bacterial genomes. In contrast,
hybrid SKs are predicted in about one-third of bacterial
genomes (Galperin, 2005; Zhang and Shi, 2005). Hybrid
SKs enforce an extra level of regulatory complexity in TCS,
as their additional sites of phosphorylation are thought to
function as checkpoints that fine-tune whether a physi-
ological output is instigated under particular environmental
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conditions. The vast majority of hybrid SKs that autophos-
phorylate require each additional phosphorylation site to
promote effective regulation of downstream phenotypes
(Tsuzuki et al., 1995; Uhl and Miller, 1996; Jourlin et al.,
1997; Takeda et al., 2001; Hsu et al., 2008; Goodman
et al., 2009). SypF is an exception to this rule.

Our genetic and biochemical studies demonstrated that
SypF controls biofilm formation by functioning directly
above both SypG and SypE, confirming its importance in
the Syp regulatory cascade. Complicating these results,
however, was the irrefutable evidence that another hybrid
SK, RscS, also controlled biofilms, an uncommon arrange-
ment for TCS cascades. In other TCS pathways with
multiple SKs, such as the Vibrio harveyi luminescence
(Lux) and Bacillus subtilis sporulation cascades, these SKs
function as separate inputs into downstream regulators
(Jiang et al., 2000; Henke and Bassler, 2004). Thus, we
initially proposed that SypF and RscS, together, control the
activity of the downstream RRs. This hypothesis was sup-
ported by the observations that in culture, overproducing
either RscS or the SypF variant, SypF*, induced wrinkled
colony formation (Yip et al., 2006; Darnell et al., 2008), and
that both RscS (Geszvain and Visick, 2008) and SypF*
(Fig. 2) required sites of autophosphorylation to induce this
phenotype. However, although SypF* could function as a
hybrid SK in the cell, this activity seemed not to be physi-
ologically relevant. In particular, only the single, non-
enzymatic HPt domain of SypF was required to promote
host colonization, an in vivo phenotype that does not
require the artificial overexpression of regulatory genes.
Similarly, we observed that RscS-induced wrinkled colo-
nies required the HPt domain of SypF, but not N-terminal,
enzymatic regions of SypF. Combined with our data that an
RscS-SypF chimera is sufficient to promote colonization,
we conclude that (i) SypF does not function as an SK under
biofilm-promoting conditions, (ii) SypF* activity is not physi-
ologically relevant and (iii) SypF functions downstream of
RscS and thus RscS and SypF do not provide separate
inputs into the Syp pathway. We propose a mechanism in
which RscS bypasses its own HPt domain and preferen-
tially hijacks the HPt domain of SypF to affect the activity of
the downstream RRs, SypE and SypG, to control biofilms
(Fig. 1B).

Why might SypF*, but not SypF, function as an SK in
vivo? We maintain our previous conclusion that in the cell,
SypF* is in a kinase ‘on’ state (Darnell et al., 2008). SKs
generally function as homodimers, and histidine kinase
activity requires that the ATP-hydrolyzing domain (HAT-
Pase_c) interact with the HisKA domain, which contains
the conserved, phosphorylatable histidine, in cis (Casino
et al., 2009; Pena-Sandoval and Georgellis, 2010) or in
trans (Pan et al., 1993; Marina et al., 2005; Dago et al.,
2012; Ashenberg et al., 2013). This histidine side chain is
generally solvent exposed, allowing it to interact with and

receive phosphoryl groups from the HATPase_c domain.
Our observation that the S247F mutation within wild-type
SypF generates the SypF* phenotype confirmed that this
mutation is sufficient to alter the enzymatic activity of SypF
within the cell. Serine 247 is located three amino acids
away from the site of phosphorylation. Perhaps this muta-
tion changes the position of the downstream histidine,
placing it in a location to be more readily phosphorylated by
the HATPase_c domain.Although our genetic data support
this conclusion, it remains to be determined whether SypF*
has higher catalytic activity than SypF in the cell.

What is unprecedented about the Syp pathway is that
wild-type SypF apparently relies on the enzymatic activity
of a different SK as a source of its phosphoryl group in vivo.
This result is especially surprising considering the evi-
dence that SypF exhibits autokinase activity in vitro. Simi-
larly, the Eps pathway in Myxococcus xanthus contains a
hybrid SK, EpsC, that exhibits SK activity in vitro, but does
not require residues involved in autophosphorylation in
vivo (Schramm et al., 2012). In vitro evidence suggested
that another hybrid SK, EpsA, could phosphorylate the
REC domain of EpsC, but whether this mechanism occurs
in vivo remains to be determined (Schramm et al., 2012).
Together, SypF and EpsC contradict the assumption that
an enzymatically competent SK must function as so in vivo.
Furthermore, the fact that SypF instead uses the enzy-
matic activity of RscS is a unique result. We propose that
this may be a mechanism more common than is currently
appreciated; there are examples of SKs that do not require
all sites of phosphorylation to promote a phenotype (e.g.
Laskowski and Kazmierczak, 2006; Chand et al., 2011),
but it remains to be tested whether they have histidine
kinase activity or whether an interacting partner exists to
supply a phosphoryl group.

If V. fischeri does not require SypF to function as an SK
to promote biofilms, then why is full-length sypF main-
tained in the genome? This question is especially perplex-
ing given the observation that the syp locus in some other
species of Vibrio encodes SypF as a single HPt domain
(Supporting Information Fig. S3). One explanation is that,
in V. fischeri, sypF is fated toward degeneracy, but the 5’
sequences have not had sufficient time to be negatively
selected for and lost. If this is sypF’s fate, then the Syp TCS
would end up similar to the Rcs pathway in Escherichia
coli, where the hybrid SK, RcsC, donates phosphoryl
groups to the HPt domain in a degenerate SK, RcsD
(Takeda et al., 2001).Alternatively, conditions found in later
stages of colonization or outside of squid colonization
could require that SypF utilize its enzymatic domains.
V. fischeri is a marine organism found on ocean sediment
and in association with a number of aquatic animals
besides E. scolopes (Ruby and Nealson, 1976; Yetinson
and Shilo, 1979; Ramesh et al., 1989; Lee and Ruby, 1992;
Haygood, 1993; Ortigosa et al., 1994; Ruby and Lee, 1998;
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Mandel et al., 2009). Perhaps, in these other contexts,
SypF functions as a bona fide SK to induce formation of the
Syp or a Syp-like biofilm. With this hypothesis in mind, the
RscS-SypF interaction brings to light the intriguing possi-
bility that domains within the same signaling network could
have discrete roles depending on environmental condi-
tions surrounding the cell. It should be noted that, although
the HPt domain of SypF alone and the RscS-SypF chimera
allowed for V. fischeri to colonize E. scolopes, these pro-
teins did not promote the same efficiency of colonization as
seen with wild-type V. fischeri. This suggests that there
may be other, more subtle roles for the N-terminal domains
of SypF or the HPt domain of RscS during colonization. For
example, many SKs exhibit both kinase and phosphatase
activity (Ninfa and Magasanik, 1986; Aiba et al., 1989;
Yang and Inouye, 1993; Freeman et al., 2000; Casino
et al., 2009; Huynh et al., 2010), so SypF could utilize both
of these activities to permit fine-tuning of the Syp phospho-
relay. Similarly, perhaps the transmembrane regions within
SypF allow for membrane localization, which may be
important for efficient signaling in the Syp pathway. The
relative importance of these additional domains during
colonization awaits exploration.

Continued research into TCS has unveiled an increasing
number of TCS architectures with two or more interacting
SKs (e.g. Goodman et al., 2009; Schramm et al., 2012; He
et al., 2013; Kong et al., 2013); however, the environmen-
tal pressures that selected for these interactions remain
unknown. Conversely, V. fischeri has given researchers
some clues as to how the complex Syp pathway may have
evolved. In V. fischeri, there are at least two genetic loci
required for in vivo biofilms: the syp locus and rscS.
Whereas the syp locus is conserved in V. fischeri, only a
subset of V. fischeri strains contains rscS (Mandel et al.,
2009). This suggests that the acquisition of rscS eventually
granted V. fischeri access to the light organ of E. scolopes.
sypF is conserved in V. fischeri, but perhaps for coloniza-
tion purposes, RscS functionally replaced the enzymatic
activity of SypF, and the HPt domain of SypF was positively
selected for to provide an additional regulatory checkpoint.
If only a small number of environments require the Syp
biofilm, then it seems reasonable that this intricate TCS
arrangement evolved to prevent inappropriate activation of
a complex developmental process.

Flexibility in the arrangement of TCS allows all domains
of life to precisely regulate their physiology to manage a
vast repertoire of environments. The unique architecture of
Syp, for example, has allowed V. fischeri to expand its
niche to include the light organ of E. scolopes, thus out-
competing all other bacterial strains found in the local
environment. Therefore, Syp demonstrates not only the
plasticity of TCS pathways, but also provides a potential
model for how a bacterium may adapt to conquer new
environments and guarantee proliferation of its progeny.

Experimental procedures

Bacterial strains and media

The bacterial strains used in this study are listed in Table 1 and
were derived from ES114, a wild-type V. fischeri strain isolated
from E. scolopes (Boettcher and Ruby, 1990). V. fischeri
derivatives were generated using previously described conju-
gation (Visick and Skoufos, 2001) mutagenesis (Le Roux
et al., 2007; Shibata et al., 2012) and transposon (Tn7) chro-
mosomal insertion (McCann et al., 2003) methods. V. fischeri
cells were grown in Luria-Bertani salt (LBS) media (Graf et al.,
1994), seawater tryptone (SWT) media (Boettcher and Ruby,
1990) or HEPES minimal media (HMM) (Ruby and Nealson,
1977). E. coli strains used for molecular genetics in this study
include: ER2508 [New England Biolabs (NEB)], TAM1 λ pir
(Active Motif), π3813 (Le Roux et al., 2007), CC118 λpir
(Herrero et al., 1990) and GT115 (Invivogen). E. coli strains
were grown in Luria Bertani (LB) (Davis et al., 1980). Solid
media contained 1.5% agar. For V. fischeri, antibiotics were
added to the following concentrations when necessary: eryth-
romycin at 5 μg ml−1, tetracycline (Tet) at 5 μg ml−1 in LBS or
30 μg ml−1 in SWT and HMM, or chloramphenicol (Cm) at
2.5 μg ml−1. The following antibiotics were added to E. coli
media where appropriate: Cm at 25 μg ml−1, Tet at 15 μg ml−1,
kanamycin at 50 μg ml−1 or ampicillin (Amp) at 100 μg ml−1.

Plasmid construction

Plasmids used in this study are indicated in Table 1 and
Supporting Information Table S1. Plasmids were generated
using either restriction digest-based cloning or Gibson assem-
bly cloning (NEB). In some cases, DNA sequences of interest
were amplified via polymerase chain reaction (PCR) using the
indicated primers and inserted into the pJET1.2 cloning vector.
DNA sequences were subcloned into the pKV363 suicide
vector used for gene deletions, the pKV69 overexpression
plasmid or the pEVS107 mini-Tn7 delivery vector using stand-
ard molecular techniques. Alternatively, sequences were
amplified using the indicated primers and then inserted into a
mobilization vector using the Gibson Assembly approach
(NEB). For site-directed mutagenesis of sypF, sypG or sypF*,
either Gibson Assembly or the Quick-Change Site-Directed
Mutagenesis Kit (Stratagene) with the primer(s) indicated in
Supporting Information Table S2 was used.

Wrinkled colony assay

Vibrio fischeri cells were grown overnight with shaking at
28°C in LBS Tet and then subcultured and grown to an optical
density of 600 nm (OD600) of 0.2. Ten microliters of the culture
was spotted on LBS plates containing Tet to maintain plasmid
selection. All spots were grown at room temperature (24°C)
and images were captured at the indicated time points using
a Zeiss stemi 2000-C dissecting microscope.

β-galactosidase measurements

Vibrio fischeri strains were grown overnight in triplicate at 24°C
with shaking in HMM with Tet. Cultures were back-diluted into
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fresh medium to an OD600 of 0.2 and then grown for 24 h. One
milliliter was removed and β-galactosidase activity was meas-
ured as described (Miller, 1972). Protein levels were assessed
using previously described methods (Lowry et al., 1951) and
the data are reported as β-galactosidase activity per milligram
of protein.

Western blot procedure

Overnight samples of V. fischeri cells were standardized by
OD600 and lysed with 2× sample buffer (100 mM Tris pH 6.8,
4% sodium dodecyl sulfate (SDS), 20% glycerol, 12%

β-mercaptoethanol, 0.01% bromophenol-blue). When higher
concentrations of cells were needed to assess SypF-FLAG
levels expressed in single copy, samples were lysed with
B-PER (Thermo Scientific) with 10 mg ml−1 DNase. Lysates
were resolved on an SDS-polyacrylamide gel (10%, 29:1
acrylamide: N, N’-methylene-bis-acrylamide, 375 mM Tris pH
8.6, 0.1% SDS), transferred to a PVDF membrane and sub-
jected to standard western blot procedures using an anti-
FLAG primary antibody (Sigma-Aldrich) and an horseradish
peroxidase (HRP)-conjugated secondary antibody (Sigma-
Aldrich). Proteins were visualized using SuperSignal West
Pico Chemiluminescent Substrate (Thermo Fisher Scientific)
with subsequent exposure to film.

Table 1. Strains and key plasmids used in this study.

Strains

Strain Relevant genotype Source or reference

ES114 Wild-type Vibrio fischeri Boettcher and Ruby, 1990
KV3246 attTn7::PsypA-lacZ Morris and Visick, 2013
KV4389 attTn7::ermR Morris et al., 2011
KV5367 ΔsypF This study
KV6351 ΔrscS ΔsypF This study
KV6526 ΔsypF attTn7::sypG*-FLAG This study
KV6527 attTn7::sypG*-FLAG This study
KV6586 ΔsypE ΔsypF attTn7::sypG*-FLAG This study
KV6659 ΔsypF attTn7::sypF-FLAG This study
KV6692 ΔsypF attTn7::sypFD549A-FLAG This study
KV6896 ΔsypF attTn7::sypFH250Q-FLAG This study
KV6921 ΔsypF attTn7::ermR This study
KV7085 ΔsypF attTn7::sypFH705Q-FLAG This study
KV7230 attTn7::sypG*-FLAG PsypA-lacZ This study
KV7231 ΔsypF attTn7::sypG*-FLAG PsypA-lacZ This study
KV7154 ΔsypF attTn7::sypFH705Q D549A-FLAG This study
KV7155 ΔsypF attTn7::sypFH705Q D549A H705Q-FLAG This study
KV7226 ΔsypF attTn7::sypF-HPt-FLAG This study
KV7371 IG (yeiR-glmS)::PsypA-lacZa This study
KV7372 ΔsypF IG (yeiR-glmS)::PsypA-lacZa This study
KV7377 ΔsypF IG (yeiR-glmS)::PsypA-lacZ attTn7::sypF-HPt-FLAGa This study
KV7386 ΔsypF IG (yeiR-glmS)::PsypA-lacZ attTn7::sypF-FLAGa This study
KV7387 ΔsypF IG (yeiR-glmS)::PsypA-lacZ attTn7::sypFH705Q-FLAGa This study
KV7410 IG (yeiR-glmS)::PsypA-lacZ attTn7::ermRa This study
KV7412 ΔsypF IG (yeiR-glmS)::PsypA-lacZ attTn7::ermRa This study
KV7413 ΔsypF IG (yeiR-glmS)::PsypA-lacZ attTn7::sypF-HPtH705Q-FLAGa This study
KV7485 ΔsypF attTn7::sypF-HPtH705Q-FLAG This study
KV7651 ΔsypF ΔrscS attTn7::rscS-sypF chimera This study
KV7654 ΔsypF ΔrscS attTn7::rscS This study
KV7656 ΔsypF ΔrscS attTn7::sypF This study
KV7657 ΔsypF ΔrscS attTn7::ermR This study

Key plasmids

Plasmid Description Source or reference

pANN61 pKV69 + sypF*D549A generated using primer 1295 This study
pANN62 pKV69 + sypF*H705Q generated using primer 1569 This study
pANN69 pCLD29b + rscS-sypF chimera-FLAG generated using primers 1899,

1900, 1901, 1882
This study

pARM7 pKV282 + rscS Morris et al., 2011
pCLD29 pKV69 + sypF* Darnell et al., 2008
pCLD54 pKV69 + sypF Darnell et al., 2008
pKV69 Vector; CmR, TetR Visick and Skoufos, 2001
pKV282 Vector, TetR Morris et al., 2011

a. IG (yeiR-glmS): intergenic (IG) region between the yeiR and glmS genes directly upstream of the Tn7 site in the chromosome.
b. The original sypF* sequence was removed from pCLD29 using restriction enzymes before the insertion of indicated DNA sequences.
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Protein production

Sequences encoding the REC domain of SypG and the cyto-
plasmic form of SypF were amplified by PCR and cloned into
pMAL-c5x using Gibson Assembly to generate N-terminal
maltose-binding protein (MBP) fusion proteins. Plasmids were
transformed into the ER2508 strain (NEB), a BL21 derivative
that does not express native MBP. To purify cytoplasmic
MBP-SypF (pANN48) and MBP-SypF* (pANN74), 1 l of Amp-
containing LB was inoculated with the appropriate E. coli
strain and grown to an OD600 of 0.7 at 37°C. Protein production
was induced with 0.1 mM IPTG at 18°C overnight. Cells were
harvested by centrifugation (10 000 × g) for 10 min and lysed
using B-PER detergent (Thermo Scientific) with 100 μl of
20 mg ml−1 lysozyme (Thermo Scientific), 20 μl of 10 mg ml−1

DNase (Sigma) and 50 μl of 100 μM PMSF (Sigma). Lysates
were cleared by centrifugation at 16 000 × g for 20 min.
Supernatant was applied to an amylose-resin column (NEB),
washed three times with 1× phosphate-buffered saline
(137 mM NaCl, 2.7 mM KCl, 10 mM NaH2CO4, 1.8 mM
KH2PO4, pH 7.4) and eluted with 10 mM maltose. An Amicon
30k filter device (Millipore) equilibrated with storage buffer
(50 mM Tris pH 8, 50 mM KCl, 50% glycerol) was used to
exchange the elution buffer with storage buffer and to concen-
trate the purified protein. To purify MBP-SypG-REC (pANN49),
a similar approach as above was taken, except 500 ml of cells
at an OD600 of 0.5 was induced with 0.5 mM IPTG at 24°C
overnight. To purify GST-SypE (pARM141), we modified the
methods from Morris and Visick (2013) as follows: briefly,
pARM141 expressed from the ER2508 strain was used
because this improved solubility of GST-SypE. This E. coli
strain was grown to an OD600 of 0.5 and then induced with
0.4 mM IPTG overnight. Cells were harvested and lysed with
Bugbuster (Novagen), and the supernatants were applied to
Glutathione Sepharose 4B columns. Bound proteins were
eluted with 10 mM glutathione. GST-SypE was concentrated
and the elution buffer was exchanged with storage buffer using
an Amicon 30k filter device (Millipore). Purified proteins
were assessed by resolving samples on a 10% SDS-
polyacrylamide gel with subsequent Coomassie Brilliant Blue
R-250 protein staining (Thermo Scientific) or western immu-
noblotting procedures as described above using anti-GST or
anti-MBP primary antibodies (Sigma).

In vitro assays

Autokinase reaction: 2 μg μl−1 of purified MBP-SypF or MBP-
SypF* was incubated in kinase buffer [50 mM Tris-HCl pH 8,
50 mM KCl, 5 mM MgCl2 and 5μCi [γ32P]-ATP (3000 Ci
mmol−1)] for 30 min at 28°C. In reactions without radiolabeled
ATP, the same volume of 2 mM cold ATP was added. Samples
were stopped with 5× sample buffer (250 mM Tris-HCl pH 6.8,
10% SDS, 20% glycerol, 3% β-mercaptoethanol, 0.01%
bromophenol-blue) and electrophoresed through a 10% SDS-
polyacrylamide gel, which was dried for 2 h and then exposed
to film for 24–48 h. Phosphotransfer reactions: phospho-MBP-
SypF or phospho-MBP-SypF* was obtained as described
above. Equimolar concentrations of GST-SypE or MBP-SypG-
REC were added and the reactions were incubated for 30 min.
As a negative control, GST-SypE or MBP-SypG-REC was
incubated in the same buffer conditions for 30 min but in the

absence of a kinase. To assess levels of phosphorylated
proteins, autoradiographs were generated as described
above.

Colonization assay

Vibrio fischeri strains were grown on agar plates overnight
and then inoculated and grown to early log phase in liquid
SWT media without shaking at 28°C. Aposymbiotic juvenile
squid were collected shortly after hatching and placed in
artificial sea water (ASW) (Instant Ocean, United Pet Group)
that contained V. fischeri strains at a concentration of
1000 cells ml−1. Colonization was allowed to proceed for 18 h
at which point individual E. scolopes was homogenized in
70% ASW. Serial dilutions of the homogenates were plated
on SWT to determine the colony-forming unit (CFU) of V. fis-
cheri per squid. Limit of detection is 14 CFUs of V. fischeri per
squid. Experiments involving E. scolopes animals were
carried out using approaches described in an Animal Com-
ponent of Research Protocol approved by Loyola University’s
Institutional Animal Care and Use Committee (LU #107314,
201297).
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A 
H-box Fhxxh(S/T/A)H(D/E)h(R/K)TPLxxh 

N-box (D/N)xxxhxxhhxNLhxNAh(F/H/Y)(S/T) 

D-box/F-box hxhxhxDxGxGhxxxxxxxhFxxF 

G-box GGxGLGLxhhxxhhxxxxGxhxhxxxxxxGxxFxhxh 

 

B        H-box 

SypF (V. fischeri)   ---KSRFLASMSHEIRTPMNAVLGLLAILKDTTLKPNQKELVNTATDSSELLLSIINDIL  

ArcB (E. coli)       SRDKTTFISTISHELRTPLNGIVGLSRILLDTELTAEQEKYLKTIHVSAVTLGNIFNDII  

VieS (V. cholerae)   -EARNHFLAVVSHELRTPIAAMLGLMEILASRLKNSESQLLLTNAISSAERLKLHVNDIL  

EnvZ (E. coli)       ---RTLLMAGVSHDLRTPLTRIR-----LATEMMSEQDGYLAESINKDIEECNAIIEQFI  

                        :. ::: :**::***:  :      *     . :.     .   .       .:::: 

 

SypF (V. fischeri)   DFSRMEANTFYLENHIFNIHKSLNSVLKTFHPQAQNKQLELSLFIADNVPTYVQGDAHRL  

ArcB (E. coli)       DMDKMERRKVQLDNQPVDFTSFLADLENLSALQAQQKGLRFNLEPTLPLPHQVITDGTRL  

VieS (V. cholerae)   DFSKIEAQQLQLDIGLYNLTDELGPLLRGFEASAQLKEIEFDVIWSPNSLLLANFDALRF  

EnvZ (E. coli)       DYLRTG---QEMPMEMADLNAVLGEVIA--AESGYEREIETALYPG---SIEVKMHPLSI  

                     *  :       :     ::   *  :      ..  : :.  :         .  .   : 

     N-box          D-box/F-box 

SypF (V. fischeri)   RQILLNLVGNSLKFTDDGQVQILVNAEEHEGRIQLHCSVQDSGIGIQQEQLEYLFDEFTM  

ArcB (E. coli)       RQILWNLISNAVKFTQQGQVTVRVRYDEGD---MLHFEVEDSGIGIPQDELDKIFAMYYQ  

VieS (V. cholerae)   NQIVTNLLSNAIKFTDQGRVVFKIDVAPEM----LTIVVEDTGCGMTQTQIESLFVPFAQ  

EnvZ (E. coli)       KRAVANMVVNAARYGN-GWIKVSSGTEPNR----AWFQVEDDGPGIAPEQRKHLFQPFVR  

                     .: : *:: *: :: : * : .                *:* * *:   : . :*  :   

          G-Box 

SypF (V. fischeri)   ADNSFS-RTHEGSGLGLAICQRLVHMMDGTITVNSQYGLGSEFSFNIQLDKATTKE---- 

ArcB (E. coli)       VKDSHGGKPATGTGIGLAISRRLAKNMGGDITVTSEQGKGSTFTLTIH------------  

VieS (V. cholerae)   ADSTIT-RRFGGTGLGMSIVANLIELMNGKIEVKSEFEQGTQIQVNL-------------  

EnvZ (E. coli)       GDSART---ISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVPVTRAQGTTKE  

          ..:       *:*:*:::  .: .  .* : : :.   *  :   : 

 
Supplementary Figure S1. Sequence alignment of SypF with known, functional histidine kinases. (A) Homology boxes in HisKA and HATPase_c 

domains (Grebe and Stock, 1999). The HisKA region contains the site of autophosphorylation within the H-box, and the HATPase_c domain contains 

the N, D, F, and G-boxes, which bind ATP and/or metal cofactors. (B) Sequence alignment of HisKA and HATPase_c domains from SypF and known 

functional SKs. Sequences were obtained from the following bacterial strains: V. fischeri ES114, E. coli MG1655, and Vibrio cholerae AC50, and were 

aligned using the online software, ClustalW, http://embnet.vital-it.ch/software/ClustalW.html. * represents an identical amino acid; : represents a highly 

conserved amino acid; = represents a moderately conserved amino acid. 

http://embnet.vital-it.ch/software/ClustalW.html
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Supplementary Figure S2. Wrinkled Colony phenotype and/or expression of SypF*-FLAG and SypF-

FLAG variants. 

(A) Wrinkled colony assay of wild-type (ES114) cells overproducing SypF variants from a plasmid.  Plasmids 

are as indicated: pSypF* (pCLD29); pSypF*-FLAG (pANN70); pSypF*H250Q-FLAG (pANN71); pSypF*D549A-

FLAG (pANN72); pSypF*H705Q-FLAG (pANN76); pSypFS247F-FLAG (pANN73). Cells were spotted on an agar 

plate and colony morphologies were assessed after 40 hours. (B) Western blot analysis of untagged SypF* and 

FLAG-tagged SypF proteins from strains used in Supp. 1A.  (C) Western blot analysis of FLAG-tagged SypF 

proteins encoded in single copy from the chromosome of a sypF deletion strain (See Fig 5A). EC: empty cassette. 

Strains are as follows: SypF-FLAG (KV6659); EC (KV6921); SypFH705Q-FLAG (KV7085); SypFH250Q D549A-

FLAG (KV7154); SypFH250Q D549A H705Q-FLAG (KV7155). 
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Supplementary Figure S3. The genomic region around sypF and sypF-like HPt-encoding genes in Vibrio 

species. A subset of Vibrio genomes that contain syp genes are depicted (Altschul et al., 1997, Altschul et al., 

2005). The organisms containing sypF or sypF-like genes are as follows. Aliivibrio salmonicida LFI1238 

(VSAL_II0307)(Holland et al., 1997), Vibrio nigripulchritudo (VIBNI_A1485)(Goudenege et al., 2013), Vibrio 

sp. EJY3 (VEJY3_08720)(Roh et al., 2012), Vibrio vulnificus YJ016 (VV1628)(Chen et al., 2003), V. splendidus 

LGP32 (VS_1526), Vibrio campbellii ATCC BAA-1116 (VIBHAR_02229)(Wang et al., 2013), Vibrio sp. Ex25 

(VEA_003532), Vibrio parahaemolyticus RMID 2210644 (VP1472)(Makino et al., 2003), and Vibrio 

alginolyticus NBRC 15630 = ATCC 17749 (VAL01S_15_00550). For EJY3 and V. vulnificus, the gene in the 

position of sypE encodes a phosphonate ABC transporter substrate-binding protein. For V. splendidus, sypD and 

sypE are lacking, and four other genes are present between the sypC-like gene and the HPt-encoding gene. For 

the last four, the blue line indicates the absence of sypE and the 5’ end of sypF. Arrows depicting genes are not 

to scale. 

sypD sypE sypF sypG 

sypG V. splendidus 

sypD sypG V. campbelli 
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Supplementary Table 1. Plasmids used in this study 

Name Description Relevant Primers Source or Reference 

 

pANN17 pKV363 + 3.8 kb sequences flanking sypE sypF 1219, 519, 1249, 1375 This study 

pANN20 pEVS107 + Plac-sypF-FLAG 1609, 1563 This study 

pANN21 pEVS107 + Plac-sypFD549A-FLAG 1609, 1563 This study 

pANN24 pEVS107 + Plac-sypFH250Q-FLAG 1609, 1563 This study 

pANN34 pEVS107 + Plac-sypG*-FLAG 1609 1438 This study 

pANN45 pEVS107 + Plac-sypFH705Q-FLAG 1795, 1793, 1796, 1794 This study 

pANN46 pEVS107 + Plac-sypFH705Q D549A H705Q-FLAG 1795, 1793, 1796, 1794 This study 

pANN48 pMAL-c5x producing SypF amino acids 95-766 1828, 1829 This study 

pANN49 pMAL-c5x producing SypG-REC amino acids 1-118 1809, 1810 This study 

pANN50 pARM47
1
 + Plac-sypF-HPt-FLAG  1902, 1796 This study 

pANN52 pANN34 + PsypA-lacZ N/A This study 

pANN58 pARM47
1
 + Plac-sypF-HPtH705Q-FLAG  1902, 1796 This study 

pANN59 pJMO8 + PsypA-lacZ 1860, 1861 This study 

pANN61 pKV69 + sypF*D549A 1295 This study 

pANN62 pKV69 + sypF*H705Q 1569 This study 

pANN65 pEVS107 + Plac-sypFH705Q D549A-FLAG 1795, 1796 This study 

pANN69 pCLD29
2
 + rscS-sypF chimera-FLAG  1899, 1900, 1901, 1882 This study 

pANN70 pCLD29
1
 + sypF*-FLAG  1881, 1882 This study 

pANN71 pCLD29
1
 + sypF*H705Q-FLAG  1881, 1786, 1785, 1882 This study 

pANN72 pCLD29
1
 + sypF*D549A-FLAG  1295 This study 

pANN73 pCLD29
1
 + sypFS247F-FLAG  1881, 1784, 1783, 1882 This study 

pANN74 pMAL-c5x producing SypF* amino acids 95-766 1828, 1829 This study 

pANN76 pCLD29
1
 + sypF*H705Q-FLAG  1881, 1793, 1794, 1882 This study 

pANN77 pARM47
1
 rscS-sypF chimera  1908, 1907 This study 

pANN78 pARM47
1
 rscS  1908, 1909 This study 

pARM7 pKV282 + rscS N/A (Morris et al., 2011) 

pARM47 pEVS107 + Plac sypE N/A (Morris et al., 2011) 

pARM141 pGEX-5X-1 + sypE N/A (Morris & Visick, 2013) 

pCLD29 pKV69 + sypF* N/A (Darnell et al., 2008) 

pCLD54 pKV69 + sypF N/A (Darnell et al., 2008) 

pEVS104 Conjugal helper plasmid (tra trb) N/A (Stabb & Ruby, 2002) 

pEVS107 Mini-Tn7 delivery plasmid, OriR6K, mob N/A (McCann et al., 2003) 

pKV282 Vector, TetR N/A (Morris et al., 2011) 

pJET1.2 Commercial cloning vector, ApR N/A Fermentas 

pJMO8 Suicide vector with sequences flanking the Tn7 site N/A (Ondrey & Visick, 2014) 

pKPQ17 pKV363 + 1 kb sequences flanking sypF 910, 1160, 1249, 271 This study 

pKV69 Vector; CmR, TetR N/A (Visick & Skoufos, 2001)  

pKV363 Suicide plasmid  N/A (Shibata et al., 2012)  

pKV456 pKV363 + 1.5 kb sequences flanking rscS 1494, 1495, 1496, 1497 This study 

pMAL-c5X Commercial MBP tag protein expression vector; ApR N/A New England Biolabs 

pUX-BF13 Transposase expressing vector N/A (Bao et al., 1991) 
1 restriction enzymes were used to remove the original sypE sequence but maintain PlacZ to drive expression of 

inserted DNA sequences 
2 the original sypF* sequence was removed from pCLD29 using restriction enzymes before the insertion of 

indicated DNA sequences 
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Supplementary Table 2. Primers used in this study. 

 
Primers   

 

Name Sequence (5' - 3') 

 

271 CTCGGCGCATACTTCTTTAC 

519 GGGTGGTGTTACTCGCTAC 

910 GTGGTGTAATCATGGCCCATACTCTATTACCACAA 

1160 TAGGCGGCCGCACTTAGTATGGATGCACTGAATAATTGAGATACC 

1219 TAGGCGGCCGCACTTAGTATGTGTGGGCTTTGTATCTGAAAAAAG 

1249 CATACTAAGTGCGGCCGCCTAAAACAAGGTTTCTCAAAATAAAAG 

1295 

1375 

(P)GACCTTATTTTCATGGCTATATCTATGCCTGAAATGGATGGCATGACGGC 

TCATCATTCCGATTCTTCATAG 

1438 AAAAAGGTACCTTATTTATCATCATCATCTTTATAATCTTCCGATTCTTCATAGGCTTCCCA 

1494 TACTGACGTATCCGTGTTGC 

1495 GGCCGATGCTAAAGATTCAG 

1496 TAGGCGGCCGCACTTAGTATGAATGATTGTGATAAGGCTATAACG 

1497 CATACTAAGTGCGGCCGCCTAAAGTATGAAACACAATAAACTTCG 

1563 ACCCGGGTTATTTATCATCATCATCTTTATAATCTTGAGAAACCTTGTTTATTTC 

1569 (P)GCATTAGAGTTTGAAGCGCAAACATTAGGAAGCAGTGCATTAACG 

1609 AACTAGTGGCACGACAGGTTTCCCGAC 

1783 GTAAAAGTCGATTTTTAGCTTTCATGAGTCACG 

1784 GGGGTTCGTATTTCGTGACTCATGAAAGCTAAAAA 

1785 CAATATGACCTTATTTTCATGGCTATATCTATGCC 

1786 CATCCATTTCAGGCATAGATATAGCCATGAAAATAAG 

1793 AATGCACTGCTTCCTAATGTTTGCGCTTCAAACTC 

1794 ATGCATTAGAGTTTGAAGCGCAAACATTAGGAAGC 

1795 GATCTACTAGTGGCCAGGTACCGGCACGACAGGTTTCCCGAC 

1796 CCAGTCTAGTTCTAGAGGGCCCTTATTTATCATCATCATCTTTATAATC 

1809 TCACATATGTCCATGGGCGGCCGCATGCTACAGAAAGTATTATTAG 

1810 CAGGGAATTCGGATCCGTCGACTAGGTGGTTAGCAATGGATG 

1828 TCACATATGTCCATGGGCGGCCGCATGACATTTCGACTTAAAACG 

1829 CAGGGAATTCGGATCCGTCGACTTCTTTTATTTTGAGAAACC 

1860 AACCATACTAAGTGCGGCCGCCTCTTAAGTCGATTCTCATTC 

1861 GAGAGACAATATAGGCGGCCGCCATAATGGATTTCCTTACGC 

1881 GCTTGCATGCCTGCAGGTCGACCATTATTGCTGTTAATTGAG 

1882 CGAGCTCGGTACCCGGGGATCCTTATTTATCATCATCATCTTTAT 

1899 GCTTGCATGCCTGCAGGTCGACGAATTACTCCCCTAATTACG 

1900 TAGCTCATTATCCATTGCATCATCTGAAAGTTTATATTT 

1901 CTTTCAGATGATGCAATGGATAATGAGCTATTATTAGTA 

1902 GATTACGCCAAGCTTGCATGCAAGGAGCTAACTATGGATAATGAGCTATTATTAG 

1907 CCAGTCTAGTTCTAGAGGGCCCTTATTTTGAGAAACCTTGTTTA 

1908 GATTACGCCAAGCTTGCATGCGAATTACTCCCCTAATTACGAAC 

1909 CCAGTCTAGTTCTAGAGGGCCCCGAAGTTTATTGTGTTTCATAC 
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