
INTRODUCTION

All metazoans form life-long beneficial partnerships 
with microbial symbionts. Most of these host-microbe 
interactions are highly specific and environmentally 
transferred, meaning that symbiont(s) must colonize the 
hosts each generation. 

Bacterial associations that arise with these metazoan 
hosts have undergone substantial selective pressures that 
assure maintenance of specificity, as well as the ability of 
the microbial partner(s) to remain in the association with-
out being detected by the host’s immune capabilities 
(McFall-Ngai 2005). In order to establish and maintain 
such highly intimate associations, well-developed mecha-
nisms must be in place to ensure and maintain successful 
colonization. These mechanisms often involve complex 
and well-regulated molecular signaling events that act as 
a type of “conversation” between the partners. Although 
the host and symbiont usually dictate a certain degree of 
selection through this molecular dialogue, particularly 
when mutualistic associations require that all partners 
participate in the relationship, it is the ecology that often 
determines whether symbionts that are environmentally 
transmitted possess a certain degree of flexibility each 
time they infect a new host (Colwell 1984). These life-
history trade-offs between environment and host selection 
are equivalent in the manner in which they shape the evo-
lution of these associations, as well as the interactions that 
are so important for maintaining stability within those 
populations (Anderson & May 1979). 

A large number of mutualistic, marine associations 
have been vastly studied to examine the chasm between 
the ecology and cellular interactions that drive environ-

mentally transmitted symbioses (Haddad et al. 1995, 
Haygood & Distel 1993, Hoegh-Guldberg et al. 2007, 
Newton et al. 2007). One type of symbiosis that has 
recently been developed as a model system includes the 
associations between sepiolid squids (Cephalopoda: Sepi-
olidae), and luminous bacteria (from the genera Vibrio 
and Photobacterium; McFall-Ngai & Ruby, 1991). Light 
organ symbioses occurring with luminous bacteria of the 
genera Vibrio and Photobacterium are found in two fami-
lies of squids: Loliginidae and Sepiolidae (Fig. 1; Herring 
1977, Mangold & Boletzky 1988). In most species of 
sepiolids, squids are bioluminescent, owing to the pres-
ence of bacterial symbionts contained in a complex, 
bilobed, light-emitting organ (Fig. 2; Montgomery & 
McFall-Ngai 1998, Nishiguchi et al. 2004). The light 
organ itself is used in a behavior termed counter-illumina-
tion or silhouette reduction (Jones & Nishiguchi 2004). 
Light produced by bacteria is used to match down-welling 

Vie et milieu - life and enVironment, 2008, 58 (2) : 175-184

THE EVOLUTIONARY ECOLOGY OF A SEPIOLID SQUID-VIBRIO 
ASSOCIATION: FROM CELL TO ENVIRONMENT 

S.V. nYHolm 1*, m.K. niSHiGuCHi 2
1 university of Connecticut, department of molecular and Cell Biology, BSP 405

91 north eagleville rd., unit 3125, Storrs, Ct 06269-3125
2 new mexico State university, department of Biology, Box 30001, mSC 3af

las Cruces, nm  88003-8001
* Corresponding author: nish@nmsu.edu

ABSTRACT. – Mutualistic relationships between bacteria and their eukaryotic hosts have exist-
ed for millions of years, and such associations can be used to understand the evolution of these 
beneficial partnerships. The symbiosis between sepiolid squids (Cephalopoda: Sepiolidae), and 
their Vibrio bacteria (gamma Proteobacteria: Vibrionaceae), has been a model system for over 
20 years, giving insight as to the specificity of the association, and whether the interactions 
themselves give rise to such finely tuned dialog. Since the association is environmentally trans-
mitted, selection for specificity can evolve from a number of factors; abiotic (temperature, salin-
ity), as well as biotic (host species, receptors, cell/cell interactions). Here, we examine the tran-
sition between these forces effecting the symbiosis, and pose possible explanations as to why 
this association offers many attributes for understanding the role of symbiotic competence.

VIBRIO
MUTUALISM

SEPIOLID
EVOLUTION

Fig. 1 – The bobtail squid, euprymna scolopes. Mantle length ~ 
4 cm.
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moonlight, so that squids avoid detection by predators or 
prey from below. The morphology of the light organ is 
such that all light is directed ventrally, which then diffuses 
through the mantle cavity and hides any shadow being 
produced (McFall-Ngai & Montgomery 1990). Emission 
of the bacterial luminescence is controlled in two ways: 
(i) by a host-modulated, diel (day/night fluctuations) 
restriction on the luminescent output per bacterial cell 
and, (ii) by a series of accessory tissues, which are func-
tionally analogous to the tissues that modulate light qual-
ity in the eye (Boettcher et al. 1996).

One of these associations, that between the Hawaiian 
bobtail squid euprymna scolopes and the bacterium 
Vibrio fischeri, has been extensively studied for the past 
20 years, and has led to a number of rich discoveries for 
understanding the underlying mechanisms that regulate 
the interactions between bacteria and eukaryotic tissues 

(McFall-Ngai 2002). e. scolopes obtains bacteria from 
the environment each generation as a juvenile. The asso-
ciation is highly specific; i.e., only V. fischeri can colonize 
the tissues of a newly-hatched juvenile e. scolopes squid 
(McFall-Ngai & Ruby, 1991). The host squid houses its 
extracellular bioluminescent symbionts in a bilobed light 
organ that is part of the ink sac complex contained in the 
center of the squid’s mantle cavity (Fig. 2, 3A). The light 
organ at this developmental stage is composed of a com-
plex ciliated field with two sets of appendages that entrain 
seawater towards a set of six pores, three on each side of 
the light organ (Fig. 3B). Upon hatching, the host venti-
lats seawater containing a mixture of bacterial species 
through the mantle cavity. Free-living V. fischeri must 
then pass through these pores and migrate through ciliated 
ducts that terminate in three separate epithelia-lined crypt 
spaces on each side of the light organ (Fig. 4). It is in these 

Fig. 2 – Cartoon diagram of euprymna, with the placement of 
the light organ within the mantle cavity. During respiration/ven-
tilation, the squid uptakes water laden with approximately 106 
bacteria/mL. Vibrio fischeri bacteria comprise approximately 
< 1% of the total number of bacteria that are found in seawater 
surrounding host squids. Specificity may be influenced by 
changes in temperature, salinity, or competition between bacte-
ria in the seawater prior to infection. Size of bacteria in refer-
ence to host squid is not to scale.

Fig. 3. – A, Central dissection of e. scolopes, exposing the light 
organ and ink sac surrounding the light organ complex. B, Sche-
matic representation of the light organ, with one side exposed. 
After hatching, the ciliated fields (cf) create currents and secrete 
mucus that aggregate Gram-negative bacteria including cells of 
Vibrio fischeri (Vf, green) that out-compete non-symbiotic bac-
teria for space in these structures. Aggregated V. fischeri migrate 
through one of three pores (arrow) on either side of the light 
organ where they colonize the light organ after navigating past 
ciliated ducts (cd) and host hemocytes (h).
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crypt spaces that colonization finally is established. 
Over the past twenty years a number of studies have 

gone onto characterize a number of developmental effects 
that V. fischeri induces in the squid host, including pro-
grammed cell death or apoptosis, epithelial cell swelling, 
hemocyte trafficking, mucus shedding, and changes in 
host gene and protein expression (Chun et al. 2006, Doino 
Lemus & McFall-Ngai 2000, Foster & McFall-Ngai 1998, 
Kimbell & McFall-Ngai 2004, Koropatnick et al. 2004, 
Koropatnick et al. 2007, Lamarcq & McFall-Ngai 1998, 
McFall-Ngai & Ruby, 1991, Montgomery & McFall-Ngai 
1994, Nyholm et al. 2002). It is the complexity of how 
Vibrio bacteria are first able to locate specific squid hosts 
in the aquatic environment, to sufficiently colonize this 
complex organ in a highly specific manner that pervades 
all levels of symbiosis: physiology, molecular specificity, 
immunology, and eventually speciation amongst different 
populations of Vibrio bacteria. 

ABIOTIC fACTORs AND The eNvIRONmeNT

Vibrio bacteria are cosmopolitan species; they are com-
monly found in both fresh and oceanic waters including 
rivers and lakes, as well as a variety of marine habitats 
(coastal, pelagic deep sea) (Feldman & Buck 1984, 
Ramesh et al. 1989, Urakawa & Rivera 2006). They 
inhabit a number of ecological niches, such as within the 
natural bacterioplankton community (Colwell 1984), as 
saprophytes on dead or decaying matter (Andrews et al. 
1984), as pathogens to both humans and other metazoans 

(Owens & Busico-Salcedo 2006, Wong & Wang 2004), 
and as commensals or mutualists with many marine inver-
tebrates (Dunlap et al. 2007, Nyholm & McFall-Ngai 
2004, Sawabe 2006). With such great breadth in their nat-
ural ability to adapt to such a wide diversity of habitats, it 
is of no surprise that variation exists among strains that 
are isolated from differing environments. 

Abiotic factors have been previously shown to have 
substantial effects on the selection of highly adaptable 
Vibrio strains (Nealson & Hastings 1979). These include 
temperature, salinity, nutrient concentration, and UV irra-
diation (Czyz et al. 2000, Rosenberg et al. 2007, Ruby & 
Nealson 1978, Soto et al. 2008a, Soto et al. 2008b). For 
instance, temperature has significant effects on the shap-
ing of ecological associations between Vibrio bacteria and 
their host organisms (Hilton et al. 2006, Larsen et al. 
2004). Many virulence factors that influence colonization 
and infection are strongly regulated by temperature, and 
can have dramatic effects upon host populations, often 
killing large numbers of individuals (Rosenberg et al. 
2007). For mutualistic Vibrios that colonize the light 
organs of sepiolid squids, there are multiple abiotic fac-
tors that may influence the ability of colonization to be 
effective, as well as which types of Vibrio species may be 
more prevalent in the light organ. Initial studies measur-
ing the abundance and types of V. fischeri bacteria that 
were found in habitats containing euprymna scolopes 
indicated that not only were symbiotically competent 
Vibrios found in Hawaiian waters, but many of those 
strains were not accountable by direct plating methods 
(Lee & Ruby 1995). Since sepiolid squid vent out 90-95% 
of their bacterial light organ composition each day with 
the onset of dawn (Boettcher et al. 1996), the bacteria 
released are viable and have a profound effect on the 
abundance of V. fischeri in habitats where host squids are 
abundant (Jones et al. 2007, Lee & Ruby 1994). This has 
been shown not only in Hawaiian e. scolopes populations 
(Lee & Ruby 1992), but in e. tasmanica populations 
throughout Australia (Jones et al. 2007). In addition, both 
morning and evening measurements infer that the diurnal 
venting behavior of e. tasmanica has an effect on the 
number of detectable bacteria in the water column during 
those times, particularly in Botany Bay, New South 
Wales, which is a semi- enclosed body of water with a 
constant population of e. tasmanica. The data suggests 
that interactions between Vibrio bacteria in the water col-
umn and resident host populations are very similar 
between the two euprymna species.

In contrast, symbiotic Vibrio bacteria in Banyuls-sur-
Mer, France, are more affected by temperature than by the 
behavior or specificity of resident host squids. Sepiola, 
which is the genus of sepiolids found in the Mediterrane-
an, harbor two species of Vibrio bacteria, V. fischeri and 
V. logei (Fidopiastis et al. 1998). These two species of 
Vibrio are similar both genetically and in their phyloge-
netic placement among other Vibrios (Browne-Silva & 

Fig. 4. – Diagram of one of the antechamber (ac) regions lead-
ing to the epithelial lined crypt spaces of the light organ. 
V. fischeri (Vf) must overcome a number of host-derived hurdles 
to successful colonization. Motility is required to traverse the 
ciliated duct (cd) where these cells also encounter potentially 
lethal host-derived reactive oxygen species. Successful 
V. fischeri cells swim through the ac and colonize microvilli 
(mv) of the epithelial cell surfaces of the light organ crypts. A 
number of cell-signaling events are involved with coordinating 
the molecular conversation needed for successful colonization 
(see text).
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Nishiguchi 2008, Nishiguchi & Jones 2004, Nishiguchi & 
Nair 2003), but have subtle differences in their ecological 
niches. V. logei is a psychrophile, and is commonly found 
in colder temperatures compared to V. fischeri. Thus, 
when examining the population structure of V. fischeri 
and V. logei according to depth, the expected outcome 
was to observe differences in abundance between the two 
species. However, there was no difference in abundance 
of either species, despite previous results examining spe-
cies of Sepiola collected at greater depths, which harbored 
more V. logei then V. fischeri (Nishiguchi 2000). What 
was evident from this study were differences between 
summer and winter collection periods of both V. fischeri 
and V. logei. Both species were significantly higher in 
their density in the winter sampling compared to the sum-
mer season, as well as the overall concentrations of bacte-
ria in the Vibrionaceae. This may in part be due to the 
availability of nutrients during the winter when the ther-
mocline disappears, as well as less competition for 
resources from other bacteria. Since both species are rep-
resented in higher concentrations during the winter than 
the summer months, this may also influence the amount 
of bacteria present in squids during those times of the year 
as well. Earlier studies suggest that no host specificity 
exists in either V. fischeri and V. logei, but rather tempera-
ture drives which Vibrio species is more prevalent in 
Sepiola (Nishiguchi 2000). Infection between these two 
species of Vibrio may be equally parsimonious, but may 
be temperature limited under high nutrient conditions 
(i.e., in squid light organs). Further studies examining the 
distribution of symbiotic Vibrio bacteria in areas where 
multiple species exist may help determine how strongly 
environment selects for specific features in competent 
bacteria, and whether factors such as temperature deter-
mines which symbiont is more capable of adapting and 
eventually evolving to a new ecological niche.

Salinity has also been a major abiotic factor for deter-
mining how well Vibrio bacteria are capable of infecting 
host tissues. All extant species of euprymna are allopatric 
and found within the Indo-West Pacific, whereas species 
of Sepiola are found sympatrically in the Mediterranean 
Sea. Thus, Vibrio bacteria infecting euprymna hosts are 
specialists, since they have a hierarchical degree to which 
they infect different euprymna species (Nishiguchi et al. 
1998). In contrast, Sepiola hosts share the same two spe-
cies of Vibrio, and do not exhibit any competitive domi-
nance during colonization (Nishiguchi 2000). Since there 
is a major difference as to how these two genera of sepi-
olid squids obtain their bacteria from the environment, 
there remains a number of mechanisms that influence 
how Vibrio bacteria respond to changes in salinity and 
temperature, both separately and synergistically. Previous 
evidence has already demonstrated how changes in osmo-
larity affect bioluminescence in symbiotic strains of 
V. fischeri ES114 (Stabb et al. 2004). Similarly, compari-
son of different V. fischeri strains from a number of 

euprymna and Sepiola host species shows that V. fischeri 
strains from habitats with greater variation (V. fischeri 
ET101, from Melbourne, Australia), appear more sensi-
tive to changes in both salinity and temperature than 
strains from more homogeneous environments (V. fischeri 
ES114, Kaneohe Bay, Hawaii; Soto et al. 2008a). The 
same is true for V. fischeri strains isolated from two close-
ly related sympatric host species (e. morsei and e. ber-
ryi), but isolated from different habitats (Northern vs. 
Southern Japan). Both strains respond differently to salin-
ity and temperature changes, and may be due to physio-
logical differences resulting from evolution within their 
respective thermal niches. Interestingly, synergistic 
effects were also observed between strains grown under 
colder temperatures and lower salinities (12°C/24 ppt), 
where microbial allelopathy may also have an important 
role in determining competitive dominance (Soto et al. 
2008a, Soto et al. 2008b). Therefore, competitive domi-
nance in genera such as euprymna may not be the sole 
result of native Vibrio symbionts having faster generation 
times than non-native ones upon colonization. Rather, V. 
fischeri strains may be competing prior to their infection 
while residing in the free-living bacterioplankton com-
munity, where the environment is much like minimal 
media relative to the nutrient rich light organ habitat.

eNvIRONmeNTAl TRANsmIssION AND The 
pOpUlATION eCOlOgy BeTweeN sepIOlID 
sqUIDs AND Vibrio BACTeRIA

Environmentally transmitted symbionts are often sub-
jected to broad and changing environmental regimes, 
where various factors select for adaptations that are suited 
for (1) host colonization and persistence, (2) the free-liv-
ing pre-infective state, or (3) both ecological niches. Yet, 
broadly distributed host-symbiont populations, like those 
found in the sepiolid squid-Vibrio mutualism, may be 
subjected to different selective conditions that may result 
in different population structures due to adaptations 
occurring in the symbiont. Interestingly, while much work 
has been completed to identify cospeciating host/symbi-
ont assemblages through studies of parallel cladogenesis 
(Nishiguchi 2002, Nishiguchi et al. 1998), few studies 
have examined how hosts or their environment may dic-
tate symbiont genotypes, and whether symbionts are 
capable of host switching across large geographical dis-
tances through ecological adaptation.

With the exception of two genera, all sepiolid squids 
possess a light organ containing luminescent bacteria 
(Nesis 1982). Studies identifying symbiotic bacteria from 
different host squids indicate that the composition from 
each species of sepiolid is comprised of only one to three 
species of Vibrio (V. fischeri, V. logei, and V. harveyi) or 
Photobacterium (P. leiognathi), and that no other species 
of bacteria are found present inside the adult light organ 
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(Fidopiastis et al. 1998, Guerrero & Nishiguchi 2007, 
Nishiguchi et al. 2004). Since light organ pores are con-
tinually open to the surrounding seawater providing 
access for any type of bacterium into the light organ 
crypts (Fig. 2), the presence of only these species of 
Vibrio or Photobacterium in the light organ illustrates the 
specificity that prevents other types of bacteria from 
entering and colonizing the light organ (Visick & Ruby 
2006).

Vibrio specificity is also hierarchical; all symbiotically 
competent vibrios are capable of colonizing sepiolid light 
organs, but native strain vibrios are better suited to colo-
nize the crypts of their own squid host light organ when 
compared to non-native Vibrio competitors (Nishiguchi 
2002, Nishiguchi et al. 1998). Because viable competent 
bacteria are “vented” every morning at dawn, this behav-
ior selects for bacteria that have evolved specificity to a 
particular host, yet must still manage to survive in the sur-
rounding environment once exuded from the light organ 
(Jones & Nishiguchi 2006, Nyholm & McFall-Ngai 
2004). 

Population studies examining both sepiolid squids and 
Vibrio bacteria have provided a roadmap for understand-
ing the large-scale dynamics of how symbiotic bacteria 
are environmentally transmitted within and between host 
populations. Using haplotype networks in combination 
with nested clade analysis, variation among three species 
of euprymna from the Indo-West Pacific (e. scolopes, 
Hawaii; e. tasmanica, Australia; and e. hyllebergi, Thai-
land) were examined to determine whether cospeciation 
was prevalent among all three species pairs (Jones et al. 
2006). euprymna species were genetically distinct from 
each other, with little or no migration over large geo-
graphical distances. In contrast, Vibrio populations con-
tained a much more diverse number of haplotypes, sug-
gesting that both host specificity as well as abiotic factors 
facilitating long-distance migration determines the popu-
lation structure of the symbionts. This was especially 
prevalent between populations of e. tasmanica that were 
separated by temperature gradients (Maugean zone), with 
specific haplotypes affiliated with either colder (Mel-
bourne and Tasmania) or warmer (Sydney, Great Barrier 
Reef) water populations.

Preliminary results from genetic studies of sympatric 
Mediterranean squid-Vibrio populations demonstrate sep-
aration among different host species as compared to their 
symbiont populations. Squid haplotypes were geographi-
cally localized, with little genetic variability among indi-
viduals of the same species from different populations 
(i.e., S. affinis). No shared haplotypes were found among 
different species of Sepiola. Conversely, V. fischeri and 
V. logei populations were found to be homogenzied in the 
same area, regardless of the squid host they were isolated 
from. Similar Vibrio haplotypes were found in hosts col-
lected from both Banyuls-sur-Mer (S. France) and Bari, 
Italy (Adriatic Sea). In other words, a higher degree of 

genetic variation was found across the Western Mediter-
ranean in terms of the symbiont population. This seems to 
point at the physical mobility and environmental range of 
the symbionts and not host specificity. These observations 
are in concordance with Vibrio populaion data from the 
Indo-west Pacific, where temperature, salinity, and cur-
rents either keep particular strains restricted (Maugean 
zone), or, if conditions are similar, provide inter-clonal 
exchange between large geographical distances (NE Aus-
tralia, Hawaii, and Thailand with secondary recoloniza-
tion events occurring in Hawaii (Jones et al. 2006)). 
Vibrio bacteria that are vented daily may be under direct 
selection by abiotic factors such as water movement, 
salinity, and temperature, which influences their distribu-
tion beyond host movement (Soto et al. 2008a, Soto et al. 
2008b). Interestingly, temperature and salinity gradients 
between Vibrio populations such as those in the Mediter-
ranean and the Adriatic Seas are relatively similar, which 
may provide a selective advantage for non-native vibrios 
invading environments where different host species reside 
at similar conditions. Therefore, if temperature, salinity, 
and currents keep particular strains restricted, can adapta-
tion occur rapidly enough for V. fischeri symbionts to 
invade new host populations? If so, can temperature and 
salinity adaptation effect squid-host colonization in habi-
tats where there may be mixing of multiple strains adapt-
ed to the same environmental regime? Are the genetic 
mechanisms for colonization similar enough to “leap 
frog” from one population to another to infiltrate new host 
populations, or does adaptation to warmer temperatures 
select for strains with a higher fitness at increased tem-
peratures?

OveRCOmINg ChAlleNges Of 
eNvIRONmeNTAl TRANsmIssION 

Horizontal transmission of symbionts often pose a 
problem for both partners in that both the host and symbi-
ont must locate each other and successfully colonize and 
maintain the association each generation. In the 
e. scolopes/V. fischeri association the host and symbiont 
have evolved mechanisms for ensuring successful coloni-
zation very early in the relationship. Why are these mech-
anisms necessary in this association? Every half-second 
the juvenile squid ventilates about 1.3 ml of ambient sea-
water through its mantle cavity. Comprising less than 
0.1% of the total ambient bacteria, V. fischeri occurs at 
fewer than 500 cells/ml in nature. Thus, on average no 
more than a single V. fischeri cell, occupying about one-
millionth the volume of the mantle cavity, will be present 
during each ventilation. Without mechanisms to harvest 
them, the symbionts would have to find one of the six 
15-µm pores on the light organ surface in less than one 
second before being expelled out of the mantle cavity and 
back into the environment. How do the partners overcome 



180 S.V. NYHOLM, M.K. NISHIGUCHI 

Vie milieu, 2008, 58 (2)

these physical and environmental challenges?
 In response to peptidoglycan (a major cell wall com-

ponent of bacteria) the squid host begins to secrete mucus 
from the ciliated fields (Nyholm & McFall-Ngai 2004, 
Nyholm et al. 2000). V. fischeri along with a variety of 
other Gram-negative bacteria are able to aggregate in this 
host-derived mucus. Mucus secretions are extremely 
common in nature and a number of marine organisms use 
these secretions to harvest small particles from the water 
column, usually in feeding behaviors. However, in this 
association, the collection of bacteria from the environ-
ment is not one-sided nor is it a passive process. By some, 
as yet undescribed mechanism, V. fischeri is able to out-
compete other environmental bacteria in the mucus bio-
film and excludes these other cells in the aggregations 
before successfully colonizing the light organ (Nyholm & 
McFall-Ngai 2003). The mechanisms underlying this 
competitive advantage are not known, but V. fischeri is 
able to display positive chemotaxis towards sialic acid, a 
common component of the host mucus (DeLoney-Marino 
et al. 2003). Bacterial motility is also important during 
these initial stages of aggregation. Although non-motile 
mutants of V. fischeri can aggregate, they cannot go on to 
colonize the light organ (see below). Hyper-motile 
mutants are deficient in both their ability to form aggrega-
tions in the host mucus biofilms and thus do not colonize 
the light organ (Millikan & Ruby 2004). 

RUNNINg The gAUNTleT

Once the symbionts aggregate in the host mucus 
they must then migrate through this mucus to the pores on 
the surface of the juvenile light organ (Figs. 3 & 4). When 
they breach this border, they face an assault from a 
number of host factors that help to ensure that only 
V. fischeri will colonize the light organ crypt spaces. First, 
these cells must traverse a long ciliated duct with very 
active host-derived currents that direct seawater out of the 
pores and into the mantle cavity. Once again, symbiont 
motility is critical in navigating this physically stressful 
environment. Non-motile mutants of V. fischeri, although 
capable of forming aggregations, the first step of the colo-
nization process, never make it through the ciliated ducts 
and are thus excluded from the light organ. 

Besides these physical barriers to colonization, 
the host, armed with an arsenal of reactive oxygen species 
(ROS), including a squid halide peroxidase and nitric 
oxide (NO), also presents a challenging chemical milieu 
to any entering bacterial cell (Davidson et al. 2004, Weis 
et al. 1996). In response to these assaults, the symbiont 
has evolved countermeasures to these host barriers. 
V. fischeri gets around this first challenge by possessing a 
periplasmic catalase that scavanges hydrogen peroxide, 
the critical substrate necessary for the production of hypo-
halous acid, the microbiocidal end product of the reaction 

catalyzed by the squid halide peroxidase (Visick & Ruby 
1998). Nitric oxide and nitric oxide synthase (NOS) are 
both ROS species that can be associated with host innate 
immune responses and have been found in the ciliated 
fields, ducts, and crypt spaces of aposymbiotic (uncolo-
nized) hatchling squid. After colonization both NO and 
NOS expression are reduced in the squid host, presuma-
bly in response to some as yet undescribed symbiont sig-
nal (Davidson et al. 2004, Visick & Ruby 1998). 

Once V. fischeri crosses through the ducts they swim 
through a large epithelial-lined space referred to as the 
“antechamber” and reach the narrow epithelial crypt 
spaces where colonization and subsequent growth finally 
takes place (Sycuro et al. 2006). One additional hurdle 
that these potential symbionts encounter is a population 
of host macrophage-like hemocytes that appear to act as 
sentinels in this microenvironment (Nyholm & McFall-
Ngai 1998). 

Phagocytic hemocytes or macrophages are ubiquitous 
throughout the animal kingdom where they play an 
important role in innate defense against pathogens. 
Among invertebrates, which lack the acquired immune 
response associated with antibody production, phagocytic 
hemocytes often play a critical role in host defense (Kura-
ta et al. 2006, Stuart & Ezekowitz 2008). In mollusks, 
phagocytic hemocytes are reported to be involved in 
defense against pathogens in many tissues and their asso-
ciated lumina, and the ability of these cells to engulf 
potentially pathogenic bacteria has been reported (Bayne 
et al. 2001, Canesi et al. 2002). However, the role these 
cells may play in interacting with beneficial bacteria is 
poorly understood. e. scolopes hemocytes traverse the 
epithelium into the crypt spaces where the symbionts 
reside and appear to ‘sample’ these spaces, not unlike the 
way that mammalian blood cells sample enteric microbi-
ota (Fig. 4). Within the crypts of newly colonized juvenile 
e. scolopes, hemocytes have been observed with internal-
ized bacterial cells (Nyholm & McFall-Ngai 1998). How-
ever, within the crypts of adult squid, hemocytes have 
never been observed to have engulfed bacteria although 
they are entirely surrounded by V. fischeri cells. These 
preliminary observations suggest that the squid’s hemo-
cytes change in response to the persistent presence of the 
symbionts, perhaps as part of the complex developmental 
program induced in the host by V. fischeri. The role that 
these hemocytes play in the light organ crypt spaces is at 
present unknown. They may be there as part of the regula-
tory function of the host used to maintain the symbiont 
population, or perhaps they prevent non-symbiotic inter-
lopers from taking hold and out-competing the native 
symbiont population. Current studies in this system are 
focusing on how these immune cells interact with symbi-
otic and non-symbiotic environmental bacteria common 
to the host’s natural environment and how these responses 
may change during development.
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mOleCUlAR BAsIs Of The CONveRsATION

Specificity, at least in the e. scolopes/V. fischeri sym-
biosis, appears to be established by a number of events, 
each of which appears to be well regulated and mediated 
through a fine-tuned molecular conversation that occurs 
between the symbiont and host. A number of genomics 
tools have recently become available to researchers that 
study this association, including a completed and anno-
tated genome for V. fischeri and a cDNA expression 
library for colonized and uncolonized host light organs at 
various time points during the first three days of the sym-
biosis (Chun et al. 2006, Ruby et al. 2005). These new 
tools will serve as a roadmap for teasing apart and inter-
preting the host and symbiont genes involved with regu-
lating this conversation. A number of experimental stud-
ies have also added insight into how some aspects of this 
dialogue work. For example, many of the symbiont-
induced developmental phenotypes that have been 
observed in the host appear to be caused by microbial-
associated molecular patterns (MAMPs) associated with 
the symbiont. V. fischeri lipopolysaccharide (LPS), pepti-
doglycan, and a derivative of peptidoglycan called trach-
aeal cytotoxin (TCT) have been shown to induce host 
apoptosis, mucus secretion and cell regression respective-
ly in e. scolopes (Foster et al. 2000, Koropatnick et al. 
2004, Nyholm et al. 2002). 

The host, in turn must have receptors and well-
regulated signaling cascades to recognize and interpret 
these symbiont cues. MAMPs, especially those constitu-
ents that contribute to the cell walls and outer membranes 
of bacteria are known to interact with a variety of these 
animal and plant cell receptors (Bittel & Robatzek 2007, 
Nurnberger et al. 2004). A family of peptidoglycan recog-
nition proteins (PGRPs) is known to exist in diverse ani-
mal phyla from flies to humans (Chaput & Boneca 2007). 
Recently, four homologues of the PGRP family have been 
described in e. scolopes from sequencing of an expressed 
sequence tag (EST) gene expression library (Chun et al. 
2006, Goodson et al. 2005). It is presently unknown what 
role these receptors may play in the association, but ongo-
ing research is being conducted to determine when and 
where these PGRPs are expressed during development 
and if their expression changes in response to the symbi-
ont (M McFall-Ngai, pers comm). MAMPs are also 
known to stimulate host signaling and gene expression 
via the Toll/NFkB signaling pathway, another evolution-
arily conserved signaling pathway for which e. scolopes 
has several homologues, although like the PGRPs, the 
function has yet to be determined (Goodson et al. 2005).

Many of these signaling pathways are directly 
tied to effector mechanisms of immune responses. 
Increasing evidence suggests that in both invertebrates 
and vertebrates, the host innate immune system plays a 
critical role in mediating communication between hosts 
and microbes and these “communications” maybe far 

more complex than previously thought (Dethlefsen et al. 
2007). The “simplicity” of invertebrate models has prov-
en valuable in our understanding of the function of these 
highly conserved molecular interactions. However, the 
squid/bioluminescent bacterial associations offer the 
broader research community an opportunity to go a step 
further and explore how specificity between animal hosts 
and symbionts can evolve and become fine-tuned to dis-
tinguish between a wide range of closely-related hosts 
and symbionts. Previous work has demonstrated a hierar-
chy to colonization between different strains of V. fischeri 
and their squid hosts (Nishiguchi et al. 1998). Such highly 
evolved specificity likely involves, not only adaptation to 
the physical environmental niche of each association but, 
also selection for highly specific receptor/ligand interac-
tions. 

sUmmARy

Interactions between hosts, symbionts, and the envi-
ronment are becoming more complex as we progress to a 
better understanding of the molecular dialog between the 
partners. Environmentally transmitted symbiosis in par-
ticular, are set in a natural tug-of-war between balancing 
selective pressures from both the environment and the 
host that houses the symbiosis. Sepiolid squids and their 
Vibrio bacteria in general have a number of strategies that 
ensure that the association is successful (specificity), as 
well as allowing enough flexibility to allow adaptation to 
occur between various populations of host squids. This 
alternative strategy of accommodating a number of eco-
logically adaptable Vibrio strains not only allows for 
squid hosts to select for the best-fit symbionts, but also 
permits the bacteria to rapidly change in response to both 
the host and the environment in which the association is 
found (Gillespie & Turelli 1989, Leroi et al. 1994). 
Understanding how bacteria are capable of adapting to 
fluctuating environments has many implications that can 
be extrapolated to how organisms evolve both during and 
after transitions between habitats. Indeed, factors such as 
phenotypic plasticity, genetic polymorphisms, and a wide 
ecological breadth will influence how an organism 
responds to a new environment, and whether the pheno-
typic or genotypic response to the environment or host 
improves the fitness of the individual after those changes 
have occurred (Parmesan et al. 2005, Schlichting & 
Pigliucci 1993). Clearly, there is a need to understand 
how quickly organisms can adapt to different environ-
ments; with the noticeable change in global climate, it is 
to our benefit to determine if these changes will increase 
or decrease biodiversity on a much larger scale. This proc-
ess is one of the major factors that will determine whether 
an organism will succeed or eventually go extinct in our 
world today.
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