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During aerobic growth on glucose, several species of luminous marine bacte-
ria exhibited an incomplete oxidative catabolism of substrate. Pyruvate, one of
the products of glucose metabolism, was excreted into the medium during
exponential growth and accounted for up to 50% of the substrate carbon metabo-
lized. When glucose was depleted from the medium, the excreted pyruvate was
promptly utilized, demonstrating that the cells are capable of pyruvate catabo-
lism. Pyruvate excretion is not a general phenomenon of carbohydrate metabo-
lism since it does not occur during the utilization of glycerol or maltose. When
cells pregrown on glycerol were exposed to glucose, they began to excrete
pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose
thus appears to have an effect on the activity of preexisting catabolic enzymes.

Light emission by the luminous bacteria re-
sults from the activity of bacterial luciferase.
This enzyme is present in the cells throughout
the growth cycle but often undergoes a reduced
in vivo activity during the later phases of
growth. This phenomenon is readily seen with
colonies of luminous bacteria appearing on pe-
tri plates. Within a day or two of plating, the
cells reach a maximum intensity of light pro-
duction; however, after several days, the colo-
nies become dim and eventually dark, although
the cells themselves remain viable for many
weeks.

Bright luminescence is often restored in old
cultures in the region surrounding a chance
fungal contaminant that arises on the plate (9).
This interaction was described by Hill and his
associates (14), who found that during growth,
the luminous bacteria gradually lower the pH
of the medium to a point at which the luciferase
can no longer function. The utilization of these
excreted acids by the fungus returns the me-
dium to neutrality and allows the resumption
of light emission.

Several workers have demonstrated acid ex-
cretion as a result of anaerobic fermentation by
the luminous bacteria (7, 27). However, obser-
vations of significant acid formation by young
petri plate cultures suggest that acid excretion
may also accompany aerobic growth. Accord-
ingly, we examined the luminous bacteria with
regard to acid production during aerobic metab-
olism. One of the major products of aerobic
metabolism was pyruvate, a rarely encoun-
tered excretion product whose kinetics of ap-
pearance was investigated.

MATERIALS AND METHODS

Bacterial strains. Strains of the genus Beneckea
used in this study were identified by Baumann et al.
(2) and Reichelt and Baumann (27) as B. harveyi
(RB-130, RB-376, RB-392), B. splendida (RB-378), B.
parahaemolytica (RB-113), and B. natriegens (RB-
107). Strains of the genus Photobacterium were
characterized by Reichelt and Baumann (27) as P.
fischeri (RB-61), P. leiognathi (RB-480, RB-225), and
P. phosphoreum (RB-404). Other strains used in this
study were identified by the method of Reichelt and
Baumann (27). Four were isolated as symbionts
from the light organs of luminous fishes: MJ-1 and
CG-1 (P. fischeri) (31), PL-721 (P. leiognathi) (29),
and NZ-1 (P. phosphoreum). One luminous strain of
P. phosphoreum (MB7-38), and two unidentified
nonluminous, gram-negative rods (NL-1 and NL-2)
were isolated from seawater. The nonluminous ma-
rine strains Vibrio marinus (ATCC-15381), V. costi-
colus (NCMB-701), and V. anguillarum (strain 629)
as well as the aerobe Alcaligenes pacificus (strain
62) were also supplied by Baumann and Reichelt.
The strain of Serratia marinorubra was obtained
from A. Carlucci.

Media. The seawater media used in this study
were prepared with artificial seawater consisting of
0.4 M NaCl, 0.1 M MgSO,-7H,0, 0.02 M KCl, and
0.02 M CaCl,-2H,0 (18). The basal medium broth
(HM) contained 50 mM HEPES (N-2-hydroxyethyl
piperazine-N'-2-ethanesulfonic acid) buffer (pH 7.5),
19 mM NH,CI, 0.33 mM K,PO,-3H,0, 0.01 mM
FeSO,, and half-strength artificial seawater. For a
complex medium (HC), 5 g of peptone (Difco) and 3 g
of yeast extract (Difco) were added to 1 liter of HM.
Carbohydrate carbon sources were added as in-
dicated.

Cell enumeration. Cell material was monitored
turbidimetrically with a Coleman Jr. II spectropho-
tometer at 660 nm. The conversion of optical density
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(OD) to total cell protein was 3.0 to 3.5 mg of protein
per ml per OD unit for all strains used. Cell number
was determined electronically with a ZB-1 model
Coulter Counter with a 30-um aperture. For strain
MJ-1, cell number was linear with OD over the
range 0.05 to 0.5 OD units, and 0.1 OD unit was
equivalent to 2.7 x 108 cells per ml.

Analytical techniques. Cell protein was deter-
mined after a 30-min digestion at 100°C in 1 M
NaOH by the method of Lowry et al. (17). The con-
centrations of glucose, pyruvate, and acetate in the
spent medium were determined after centrifugation
at 8,500 x g for 10 min and filtration of the superna-
tant through 0.45-um membrane filters (Millipore
Corp.). The Glucostat method (Worthington Bio-
chemical Corp.) was used to quantify glucose, pyru-
vate was measured enzymatically by the method of
Lowry and Passonneau (16), and acetate was mea-
sured by acetokinase (30).

Conversion of carbon source to pyruvate. A vari-
ety of species of luminous and nonluminous marine
bacteria were tested for pyruvate excretion. If pyru-
vate was produced, the percentage of carbon source
utilized that was excreted as pyruvate was deter-
mined. Cells were grown aerobically to an OD of 0.3
(10° cells per ml) in 40 ml of HC with 2 mg of one of
several carbohydrates per ml. The cells were har-
vested by centrifugation at 8,500 x g for 10 min. The
pellet was washed in sterile seawater and recentri-
fuged, and the supernatant was removed com-
pletely. A 5-ml portion of HM with 3 mg of the
carbohydrate (or carbohydrate plus metabolic inhib-
itor) per ml was added, and the pellet was quickly
suspended. Several 1-ml portions were removed to
30-ml-capacity centrifuge tubes and immediately
placed in a shaker at 300 rpm, which insured com-
plete aeration of the thick cell suspension. At inter-
vals of 5 to 10 min, a tube was removed and placed in
an ice bath to stop cell activity. The tubes were
centrifuged, and the supernatant was removed and
filtered through 0.45-um membrane filters (Milli-
pore Corp.). The medium was then assayed for
substrate utilized and pyruvate produced during the
incubation period. These values were used to cal-
culate the percentage of substrate carbon converted
to pyruvate.

RESULTS

When cells of P. fischeri (strain MJ-1) were
inoculated into a complex liquid medium con-
taining glucose, the pH decreased as a function
of aerobic growth (Fig. 1). If the medium was
harvested at an OD of 0.3 (10° cells per ml),
acetate and pyruvate were found as the major
acidic excretion products.

To determine if these acids were actually
products of glucose catabolism, cells pregrown
in an HC with glucose were harvested and sus-
pended in HM containing only glucose. An
analysis of the medium during aerobic incuba-
tion revealed that 30 to 40% of the glucose-
carbon utilized by the cells was excreted as
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pyruvate (Fig. 2). Acetate accounted for less
than 9% of the utilized glucose.

Reports of pyruvate excretion and accumula-
tion in the growth medium are sufficiently unu-
sual to warrant a survey of the luminous bacte-
ria with respect to this property. Table 1 pre-
sents the results of such a survey from the four
species of luminous bacteria as well as several
other species of nonluminous, marine, faculta-
tive anaerobes. Pyruvate production occurred
to varying degrees in several strains using glu-
cose. Isolates of B. harveyi, B. natriegens, and
P. fischeri all excreted into the medium as
pyruvate a considerable portion (>10%) of the
glucose carbon utilized. A minor percentage
(<10%) was present in the medium of strains of
P. phosphoreum, V. marinus, S. marinorubra,
and several Beneckea sp. whereas P. leiogna-
thi, V. anguillarum, V. costicolus, two uniden-
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TaBLE 1. Survey of marine heterotrophic bacteria
for pyruvate excretion during utilization of glucose as
sole carbon source

% Glucose-
. . ... . carbon ex-
Species (strain) Luminosity creted as
pyruvate®
P. fischeri RB-61 + 36
P. fischeri MJ-1 +++ 35
P. fischeri CG-1 ++ 14
P. leiognathi PL-721 +++ 0
P. leiognathi RB-480 + 0
P. leiognathi RB-225 + 0
P. phospho- NZ-1 +4++ 9
reum
P. phospho- RB-404 + 6
reum
P. phospho- MB7-38 ++ 3
reum
B. harveyi RB-376 + 54
B. harveyi RB-130 - 17
B. harveyi RB-392 ++ 14
B. natriegens - 12
B. splendida + 3
B. parahae- - 1
molytica
V. marinus - 2
V. anguil- - 0
larum
V. costicolus - 0
S. marinoru- - 5
bra
Nonluminous NL-1 - 0
marine iso- NL-2 - 0
lates
A. pacificus - 0

@ Strains are designated as either moderately (+),
brightly (++), or very brightly (++ +) luminous; or
nonluminous (-).

®The percentage of glucose-carbon that is ex-
creted as pyruvic acid is indicated for each strain.
No strain was found to excrete pyruvate during
glycerol utilization.

tified nonluminous seawater isolates, and the
aerobe A. pacificus produced no pyruvate.
The process of pyruvate production from glu-
cose was thus neither present exclusively in the
luminous bacteria nor characteristic of all spe-
cies of luminous bacteria. However, isolates of
the luminous species P. fischeri and B. harveyi
demonstrated an impressive degree of conver-
sion of glucose to pyruvate, suggesting that this
process is of some importance for these species.
Consequently, a representative strain of P. fis-
cheri (MdJ-1) was chosen for subsequent study.
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In a complex medium containing glucose,
pyruvate was produced continuously over sev-
eral generations of MJ-1 and was associated
with balanced cell growth (Fig. 3). Even when a
limiting amount of glucose was used as the sole
source of carbon and energy, 10 to 20% of the
glucose carbon was returned to the medium as
pyruvate (Fig. 4). However, when glucose was
depleted, the pyruvate was promptly utilized,
demonstrating that the cells were capable of
pyruvate catabolism (Fig. 4).

The catabolism of other carbohydrates did
not result in pyruvate excretion to the extent
seen with glucose (data not shown). None of the
strains listed in Table 1 excreted pyruvate dur-
ing glycerol utilization, suggesting that this
process is not a general phenomenon of sugar
catabolism. Thus, it was of interest to observe
the initiation and kinetics of pyruvate produc-
tion in MdJ-1 cell pregrown in glycerol or glucose
when suspended in a glucose medium. Glucose-
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grown cells excreted pyruvate immediately
upon suspension in a glucose medium (Fig. 5);
the same strain however, when pregrown on
glycerol and suspended in glucose, began pyru-
vate production after a lag of 15 to 20 min. This
effect was not due to a lag in the initiation of
glucose utilization since the cells began to use
glucose immediately. Five to ten minutes is the
time period typically required for the induction
of an enzyme system in this organism (22).
However, the lag does not represent a period
during which some new enzyme(s) responsible
for pyruvate excretion must be synthesized
since the onset of excretion is unaffected in cells
in which protein synthesis is completely in-
hibited by chloramphenicol (Fig. 5).

Several other metabolic inhibitors were
tested for their effect on pyruvate excretion. Cy-
anide (10~ M), an inhibitor of oxidative phos-
phorylation, caused a slight increase in the rate
of pyruvate production for glucose-utilizing
cells, but had no effect when added to glycerol-
metabolizing cells. However, addition of so-
dium arsenite, a known inhibitor of dehydro-
genase complexes such as pyruvate dehydro-
genase, produced the pattern seen in Table 2.
Incubation of cells with glucose plus arsenite
had little effect on the pyruvate excretion rate;
however, addition of arsenite to glycerol-utiliz-
ing cells initiated d rate of pyruvate excretion
comparable to that seen during metabolism of
glucose (Table 2).

DISCUSSION

The luminous bacteria have been the subject
of several studies into the catabolic processes of
microbial intermediary metabolism. Doudoroff
(7) demonstrated that two species of the genus
Photobacterium exhibit a mixed acid fermenta-
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Fic. 5. Pyruvate excretion by strain MJ-1 in HM
with 0.2% glucose. Cells pregrown in HC plus glu-
cose and suspended in HM plus glucose with (x) or
without (@) chloramphenicol (20 mg/ml). Cells pre-
grown in HC plus glycerol and suspended in HM
plus glucose with (O) or without (A) chlorampheni-
col.
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TABLE 2. Effect of arsenite on the pyruvate excretion
rate of strain MJ-1°

Pyruvate excre-

Substrate Arsenite (mM) tion rate (ug/mg

: of protein/min)
Glycerol 0 0
Glycerol 0.5 95
Glucose 0 120
Glucose 0.5 114

2 Cells were pregrown in an HC containing either
glycerol or glucose and suspended in HM plus the
sugar, with or without arsenite.

tion of sugars when grown anaerobically. Bau-
mann et al. (2) demonstrated that isolates of the
other genus of luminous bacteria, Beneckea,
were also facultative anaerobes. When grown
aerobically, typical bacterial cytochromes were
present, confirming the capacity for oxidative
metabolism of substrates described by Johnson
(15). This report demonstrates that aerobic acid
production occurs in the luminous bacteria and
that during oxidative growth on glucose, pyru-
vate is a major metabolic excretion product in
some species.

The incomplete aerobic catabolism of sub-
strates leading to pyruvate excretion is a rarely
reported phenomenon. With perhaps one excep-
tion (26), pyruvate has been observed as a ma-
jor excretory product only in cases of unbal-
anced growth due to pH stress (22), oxygen
limitation (24), or metabolic inhibition (4). The
one exception interestingly involves Pseudomo-
nas natriegens (8, 26), an estuarine isolate that
has subsequently been reclassified as B. natrie-
gens and shown to be closely related to B.
harveyi (28).

Cells often excrete a metabolite if it is pro-
duced at a rate greater than it is utilized (23).
Thus, the excretion of pyruvate may be a reflec-
tion of an imbalance between its glycolytic for-
mation and its subsequent utilization via the
tricarboxylic acid cycle (8). For the luminous
bacteria, glucose utilization occurs at a moder-
ate rate (0.10 to 0.15 um/mg of protein per min)
for both pyruvate-excreting and nonexcreting
species, suggesting that the absolute rate of
glucose utilization is not directly related to py-
ruvate excretion. However, a decrease in the
normal activity of the enzymes responsible for
the catabolism of pyruvate could also necessi-
tate the buildup and excretion of pyruvate.

The repressive effect of glucose on the syn-
thesis of catabolic enzymes of the tricarboxylic
acid cycle is well documented (1, 10, 25). How-
ever, the presence of glucose may repress not
only the formation but also the activity of post-
glycolytic enzymes in the luminous bacteria. If



168 RUBY AND NEALSON

during the exposure to glucose the activity of
substrate catabolism is reduced at the level of
pyruvate dehydrogenase, pyruvate could accu-
mulate to a point where it must be excreted.

Support for this hypothesis is found in sev-
eral observations. Cells of MdJ-1 excrete pyru-
vate during the metabolism of glucose (and to a
lesser degree glucose-6-phosphate and fruc-
tose), but little or no excretion occurs during
utilization of glycerol, galactose, mannitol, or
maltose. This specificity and the fact that the
initiation of pyruvate excretion does not re-
quire protein synthesis suggest that glucose is
acting on an already established catabolic sys-
tem and that the effect is a specific rather than
a general one. Finally, the addition of arsenite,
an inhibitor of catabolic dehydrogenases (6, 11,
32) leads to pyruvate excretion in glycerol-uti-
lizing cells mimicking the effect of glucose addi-
tion (Table 2).

Perhaps in those species of bacteria for which
pyruvate excretion amounts to only a small
percentage of metabolized glucose, it is simply
a minor, nonfunctional activity. However, in
strains that convert 30 to 50% of their substrate
carbon into excreted pyruvate, it is conceivable
that the process may have some adaptive sig-
nificance. Luminous bacteria occur in the light
organs of several species of marine fishes (3, 12,
13, 29), these associations being of benefit to
both partners. In return for supplying nutrients
to the bacterial population, the host fish is pro-
vided with a luminescent organ that can be
used for one or more of a variety of behavioral
purposes (19).

One such association was the source of strain
MJ-1 used in this study (31). The excretion of
pyruvate by MdJ-1 in the light organ may either
be a means of minimizing the carbon and en-
ergy loss to the host, or function in regulating
the physiological state of the symbiosis (30).
Both situations are examples of biochemical
communication or exchange between partners,
a common feature of symbiotic relationships (5,
21, 22). The presence of pyruvate excretion may
thus be a specific adaptation by species of lumi-
nous bacteria to symbiotic associations.
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