Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system

Alecia N. Septer, Jeffrey L. Bose, Anna Lipzen, Joel Martin, Cheryl Whistler and Eric V. Stabb

The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes aconitase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolism and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence.

Introduction

Vibrio fischeri is a bioluminescent γ-proteobacterium that enters a light-organ symbiosis with the Hawaiian bobtail squid, Euprymna scolopes (Stabb, 2006). Bacterial bioluminescence is a key element of this symbiosis, as light is used by the nocturnal host (Jones and Nishiguchi, 2004; Stabb and Millikan, 2009), bioluminescence is a coloniza-

tion factor for V. fischeri (Visick et al., 2000; Bose et al., 2008; Koch et al., 2014) and light emission elicits responses in host tissue (Visick et al., 2000; Chun et al., 2008; Tong et al., 2009). V. fischeri induces bioluminescence most highly during sybiotic infection, prompting interest in its regulation.

Bioluminescence is controlled in part by the LuxR-LuxI pheromone-mediated regulatory system, which is often referenced as an archetype of ‘quorum sensing’, although other regulation is critical as well. LuxI synthesizes the pheromone N-(3-oxohexanoyl)-L-homoserine lactone (3OC6) (Eberhard et al., 1981), which upon reaching a threshold concentration binds LuxR to activate transcription of luxICDABEG and induce luminescence (Nealon et al., 1970; Devine et al., 1989). Although 3OC6 levels correlate with cell density, V. fischeri cells growing in culture are ~1000-fold less luminescent and accumulate less 3OC6 than cells in the host light organ even at similar high cell density (Boettcher and Ruby, 1995), illustrating that other regulators exert important control over the lux system as well.

To investigate lux regulation, Lyell et al. (2010) screened mutants of V. fischeri ES114 for bright luminescence in culture. They identified mutants >100-fold brighter than wild type with transposon insertions in acnB (VF_2158), which is the sole gene in V. fischeri that encodes aconitase, the tricarboxylic acid (TCA) cycle enzyme responsible for converting citrate to isocitrate (Fig. S1A). Although bright mutants were isolated with insertions in 13 other loci, none were affected in other TCA cycle enzymes (Lyell et al., 2010).

In some systems, a post-transcriptional regulatory role for aconitase has been suggested, whereby enzymatically inactive aconitase apoproteins lacking iron-sulfur clusters bind specific mRNAs and affect either the turnover or translation of target transcripts (Tang and Guest, 1999; Tang et al., 2002; 2004; 2005; Austin and Maier, 2013). The active aconitase enzyme contains an iron-sulfur cluster, but apo-aconitase is implicated in post-transcriptional regulation upon loss of the iron-sulfur cluster due to oxidative stress or low iron (Tang and Guest, 1999; Varghese et al., 2003; Thorgersen and Downs, 2009), conditions that are often found in host tissue, including the E. scolopes...
light organ (Visick and Ruby, 1998; Small and McFall-Ngai, 1999; Graf and Ruby, 2000; Septer et al., 2011). The results of Lyell et al. (2010) might reflect apo-aconitase-regulating luminescence post-translationally, but there are other possibilities. For example, blocking the TCA cycle might cause a metabolic shift that either affects the availability of substrates for luciferase or triggers a regulatory response leading to a change in expression of the lux operon.

A candidate for connecting acnB mutants with lux regulation is the GacS/GacA two-component system, which is conserved among many γ-proteobacteria and often plays a critical role in host colonization (Lapouge et al., 2008). In V. fischeri, GacA regulates many colonization factors, including bioluminescence (Whistler and Ruby, 2003; Whistler et al., 2007). Studies in Pseudomonas suggest that activation of the sensor kinase GacS may be linked to an imbalance in TCA cycle intermediates (Takeuchi et al., 2009), and the periplasmic-loop region of GacS is not required for signal reception (Zuber et al., 2003), consistent with GacS activity being linked to a cytoplasmic metabolite. These reports led us to speculate that perturbing the TCA cycle might regulate luminescence by modulating the Gac system.

Current understanding of how GacS/GacA (BarA/UvrY) and their partners CsrA/CsrB (RsmA/RsmB) regulate gene expression (Lapouge et al., 2008) is based largely on studies in Pseudomonas species (Rich et al., 1994; Brecic et al., 2009) and Escherichia coli (Romeo et al., 1993; Sabnis et al., 1995; Romeo, 1998; Wei et al., 2000; Pernestig et al., 2001), although this system has been examined in the Vibrionaceae and V. fischeri (Lenz et al., 2005; Kulkarni et al., 2006; Ballok, 2007; Williams et al., 2012). It is thought that in response to an activating signal, the membrane-bound sensor kinase GacS phosphorylates the DNA-binding response regulator GacA. GacA-phosphate then activates transcription of two CsrB regulatory RNAs, which contain multiple-binding sites for the post-transcriptional carbon storage regulator, CsrA. The CsrB RNAs thereby titrate CsrA away from target mRNAs that it would otherwise control (Fig. S2). Regardless of the mechanism by which Gac regulates luminescence in V. fischeri, we considered the possibility that the effect of an acnB mutation on luminescence might be due to a metabolic signal perceived by GacS leading to increased CsrB expression.

The goal of this study was to explore the unexpected bright luminescence of V. fischeri aconitase mutants. By examining whether the effect of aconitase on luminescence required (i) apo-aconitase, (ii) carbon flow into the TCA cycle upstream of aconitase, (iii) the native luxICDABEG regulation, or (iv) specific regulators such as GacS, we were able to systematically test alternative explanations for this phenotype.

Results

Bright luminescence of the ΔacnB mutant requires native luxICDABEG regulation

To examine why aconitase mutants are brighter than wild type, we first tested whether the loss of aconitase causes enhanced bioluminescence through a metabolic effect that influences luciferase’s activity. Luciferase consumes oxygen and reducing equivalents, and we considered the possibility that loss of aconitase might enhance luminescence by altering the availability of these substrates. An in-frame deletion of the acnB gene (VF_2158) generated a mutant that was ~200 times brighter than the wild-type parent (Fig. 1A), which is similar to the bright luminescence previously described for acnB::Tn mutants (Lyell et al., 2010). However, in a strain that has a non-native isopropyl β-D-thiogalactopyranoside (IPTG)-inducible promoter

© 2014 John Wiley & Sons Ltd, Molecular Microbiology, 95, 283–296
Bright luminescence of the ΔacnB mutants appears to involve TCA cycle function during respiration

The ΔacnB mutant was brighter than wild type under aerobic conditions, and similar luminescence differences were observed when the strains were grown anaerobically supplemented with trimethylamine N-oxide (TMAO) as an alternative electron acceptor (Fig. 3). However, when grown fermentatively, there was no significant difference in luminescence of the ΔacnB mutant relative to wild type (Fig. 3), even when the medium was supplemented with 50 ng ml⁻¹ 3OC6 pheromone to stimulate lux expression (data not shown). Thus, the effect of aconitase on luminescence was most apparent under conditions where, presumably, carbon would be directed toward the TCA cycle, thereby producing reducing equivalents to support respiration. Although much of V. fischeri’s physiology remains to be elucidated, bioinformatic analysis of the ES114 genome indicated that it encodes all the enzymes necessary for a complete TCA cycle and glyoxylate shunt (Fig. S1A), as well as respiratory oxidases (Dunn et al., 2010).

Suppressor mutations in gltA restore dim luminescence to ΔacnB mutants

When grown aerobically in a rich medium, the ΔacnB mutant was brighter than wild type but also displayed slower growth rates (Fig. 4A) and lower growth yield (data not shown) than did the wild type. It may seem surprising that a mutant lacking aconitase could grow at all; however, even under conditions that support respiration, wild-type V. fischeri apparently generates energy from fermentative pathways and releases fermentation acids. When deprived of any fermentable substrates, growth of the acnB mutant was blocked or more severely attenuated. Moreover, our aconitase mutants had a strict requirement for glutamate in the medium, consistent with AcnB’s role in the TCA cycle (Fig. S1A) and the bioinformatic prediction that glutamate synthesis would require alpha-ketoglutarate as a precursor. Glutamate in the medium might also promote growth of the acnB mutant by enabling it to use the combined activi-
ties of aspartate aminotransferase (VF_A0283) and aspartate ammonia lyase (VF_2353) to operate an abridged TCA cycle lacking citrate (Fig. S1B).

As previously noted for acnB::Tn mutants (Lyell et al., 2010), spontaneous mutants suppressing the ΔacnB slow-growth phenotype arose quickly during aerobic growth on rich media. We estimated these suppressors arose at a frequency of ∼10^−4, resulting in wild type-like rapid growth and dim luminescence (Fig. 4A and B).

Because LeuCD is in the aconitase superfamily, we initially focused our efforts to define the sites of suppression within suppressors isolated in the ΔleuCD ΔacnB background of strain ANS28, to eliminate the possibility of mutations in leuCD-restoring aconitase activity. However, we later found no evidence that leuCD affects suppression frequency or the site of suppression. Moreover, despite their rapid growth on rich media, all of the suppressors retained the glutamate auxotrophy of the ΔacnB parent, suggesting they remain blocked at this step in the TCA cycle.

To identify the site of suppression in the ΔacnB suppressor mutants, we first employed whole-genome resequencing of suppressors isolated in a ΔleuCD ΔacnB background. In each of the six independent suppressor mutants, we identified mutations in the gltA gene (VF_0818), which encodes citrate synthase (Table S1). Sequencing the gltA locus in strain JB26.1, a spontaneous suppressor isolated from the homogenate of a squid inoculated with JB26 (leuCD ΔacnB) similarly revealed a mutation in gltA (Table S1), suggesting that there is selective pressure favoring the growth of such suppressors during symbiotic colonization as well. We inoculated fresh aposymbiotic E. scolopes hatchlings and confirmed that suppressor JB26.1 colonizes the host better than its parent, achieving wild-type colonization levels in the host (Fig. S3).

Based on the mutations recovered in gltA (Table S1), we hypothesized that loss of citrate synthase suppressed the phenotypes associated with the ΔacnB mutation. To test this possibility, we deleted gltA and introduced the ΔacnB mutation to generate a ΔgltA ΔacnB double mutant. Consistent with our model and our earlier data, the ΔacnB mutation had no influence on growth or luminescence in the ΔgltA background (Fig. 5). The ΔgltA mutation alone did not have a statistically significant effect on luminescence relative to wild type (Fig. 5). However, bright luminescence was observed in the ΔgltA ΔacnB mutant when gltA was complemented in trans (Fig. 5), confirming that a functional citrate synthase is required for bright luminescence of the ΔacnB mutant. Thus, in contrast to instances where apo-aconitase itself functions directly as a regulator, our data suggest the regulatory effect of the ΔacnB allele on luminescence in V. fischeri results from blocking the TCA cycle immediately after citrate synthase.

Citrate accumulation in ΔacnB mutants correlates with luminescence

The previous study by Lyell et al. (2010) did not identify bright mutants with transposon insertions blocking the TCA cycle at any enzymes other than aconitase, and as shown above, the effect of the ΔacnB allele was dependent on citrate synthase. We therefore hypothesized that citrate accumulates in the ΔacnB mutant during respir-
The bright luminescence of ΔacnB mutants is dependent on gltA. Peak specific luminescence for Vibrio fischeri cultures grown aerobically in SWTO. Strains tested include wild-type (WT) ES114, ΔacnB mutant JB26, ΔgltA mutant ANS60 and ΔacnB ΔgltA mutant ANS61 carrying either the empty vector pVSV105 or complemented with the gltA-containing vector pAS114. Error bars indicate standard deviation (n = 3). Uppercase letters shared between bars indicate no statistically significant difference (P > 0.9), whereas different letters indicate significant difference (P < 0.01), based on a one-way analysis of variance (ANOVA) with Fisher’s least significant difference comparison. These data are representative of at least three independent experiments.

Iron limitation can lead to increased luminescence of V. fischeri (Haygood and Nealon, 1985), and adding exogenous iron chelators, notably including citrate, can lead to brighter luminescence (Septer et al., 2013). However, our data suggest this iron chelation effect is not responsible for the enhanced luminescence of a ΔacnB mutant. We previously found that adding citrate to cultures increased luminescence less than 10-fold, that this effect was dependent on Fur-mediated regulation of litR and that it was reversible by adding iron (Septer et al., 2013). By contrast, deleting acnB increases luminescence 100- to 1000-fold, and this effect is neither reversible by adding iron (Fig. 6A) nor dependent on litR (Fig. 6B). We considered the possibility that the ΔacnB mutant is simply more severely limited for iron than cells treated with exogenous citrate, and that adding iron to the medium (Fig. 6A) was insufficient to overcome the iron-limited effect. To test this alternative possibility, we took advantage of an established iron-responsive, Fur-regulated transcriptional reporter on plasmid pAKD912 (Septer et al., 2011; 2013). We found that addition of iron to the ΔacnB mutant reversed the iron-limitation response of this Fur-controlled reporter (Fig. S4), under the same conditions where bright luminescence was not reversed (Fig. 6A). Thus, our data suggest that deletion of acnB affects luminescence primarily through a mechanism independent of iron limitation.

GacS is required for bright luminescence in the ΔacnB mutant

We next considered whether the Gac/Csr system might connect the effects of the ΔacnB mutation with luminescence regulation, because GacA regulates luminescence (Whistler and Ruby, 2003) and previous studies were consistent with a TCA-cycle intermediate activating GacS (Zuber et al., 2003; Takeuchi et al., 2009). We hypothesized that elevated citrate levels, or a related secondary

Table 1. Citrate accumulation in *Vibrio fischeri* strains.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Growth conditions</th>
<th>Nanomole citrate per 10^9 CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Aerobic</td>
<td>bd</td>
</tr>
<tr>
<td>ΔgltA</td>
<td>Aerobic</td>
<td>bd</td>
</tr>
<tr>
<td>ΔacnB</td>
<td>Aerobic</td>
<td>381</td>
</tr>
<tr>
<td>ΔacnB gltA</td>
<td>Aerobic</td>
<td>bd</td>
</tr>
<tr>
<td>ΔacnB ΔgacS</td>
<td>Aerobic</td>
<td>bd</td>
</tr>
<tr>
<td>ΔacnB ΔcsrB1 ΔcsrB2</td>
<td>Aerobic</td>
<td>23.6</td>
</tr>
<tr>
<td>WT</td>
<td>Fermentative</td>
<td>bd</td>
</tr>
<tr>
<td>ΔgltA</td>
<td>Fermentative</td>
<td>bd</td>
</tr>
<tr>
<td>ΔacnB</td>
<td>Fermentative</td>
<td>0.5 c</td>
</tr>
<tr>
<td>ΔacnB gltA</td>
<td>Fermentative</td>
<td>bd</td>
</tr>
<tr>
<td>WT</td>
<td>Anaerobic respiration</td>
<td>bd</td>
</tr>
<tr>
<td>ΔgltA</td>
<td>Anaerobic respiration</td>
<td>bd</td>
</tr>
<tr>
<td>ΔacnB</td>
<td>Anaerobic respiration</td>
<td>852</td>
</tr>
<tr>
<td>ΔacnB gltA</td>
<td>Anaerobic respiration</td>
<td>bd</td>
</tr>
</tbody>
</table>

a. *V. fischeri* was grown in SWTO medium either in aerobic shake flasks or in anaerobic bottles supplemented with 20 mM glucose (fermentative) or 40 mM TMAO (anaerobic respiration). Data are representative of three independent experiments.

b. ‘bd’ indicates samples had citrate levels below detection for this assay (< 0.5 nmol).

c. Citrate was detectable in one of the three independent experiments for the ΔacnB mutant grown under fermentative conditions, suggesting citrate levels are around the limit of detection for this assay.

© 2014 John Wiley & Sons Ltd, Molecular Microbiology, 95, 283–296
metabolic consequence, in a \(\Delta \text{acnB} \) mutant are sensed by GacS resulting in modulation of GacA, CsrBs and CsrA, ultimately leading to direct and/or indirect induction of luminescence. To begin testing this hypothesis, we deleted the \(gacS \) sensor kinase gene (VF_2082) and introduced the \(\Delta \text{acnB} \) mutation into this background. In the absence of \(gacS \), the \(\Delta \text{acnB} \) mutation did not result in the same bright luminescence observed in the wild-type background (Fig. 7). Thus, \(gacS \) is required for bright luminescence in the \(\Delta \text{acnB} \) mutant.

The \(\Delta \text{acnB} \) mutant has elevated levels of CsrB RNAs

Putative GacA-binding sites were identified upstream of both \(csrB \) genes in \emph{V. fischeri} \cite{Kulkarni2006}, and Ballok reported that transcriptional reporters specific to \(csrB1 \) or \(csrB2 \) have lower expression in a \(gacA \) mutant \cite{Ballok2007}. These previous findings suggest that, consistent with observations in other organisms, GacA activates expression of CsrBs in \emph{V. fischeri}. Based on our hypothesis above, we predicted that strains with endogenous citrate accumulation would increase expression of the \(csrB \) regulatory RNAs. We tested this idea using CsrB-specific quantitative real-time polymerase chain reaction (qRT-PCR) and RNA isolated from wild-type, \(\Delta \text{acnB} \) and \(\Delta \text{acnB} \) suppressor mutant cultures. Primers specific for \(csrB1 \) or \(csrB2 \) cDNA had between one and three mismatches to the non-target \(csrB \). Given their similar sequences and product sizes, we cannot rule out the possibility that our primer pair matching \(csrB1 \) also amplified \(csrB2 \) cDNA and vice versa; however, that outcome would not meaningfully alter our conclusions. Consistent with our model, the \(\Delta \text{acnB} \) mutant had three- to fourfold higher levels of CsrB RNA, using either primer pair, compared with the wild type (Fig. 8A). Moreover, the \(\Delta \text{acnB} \) \(gltA \) suppressor mutant had CsrB levels lower than those in the wild type (Fig. 8A). Considering some intracellular citrate should be present in wild type, whereas the \(gltA \) mutant presumably has virtually none, CsrB levels correlate with expected relative citrate levels (\(\Delta \text{acnB} > \text{WT} > \Delta \text{acnB} \text{gltA} \)).

\textbf{Fig. 6.} Effects of citrate-mediated iron limitation on the \(\Delta \text{acnB} \) mutant. Peak specific luminescence of aerobic cultures grown in SWTO.

A. Comparison of wild-type (WT) ES114 and the \(\Delta \text{acnB} \) mutant JB26 with or without 200 \(\mu \text{M} \) FeSO\(_4\).

B. Effect of \(\Delta \text{acnB} \) allele compared in WT and \(\text{litR} \) mutant backgrounds. Strains include ES114 (WT), JB26 (\(\Delta \text{acnB} \)), JB19 (\(\text{litR::erm} \)) and ANS79 (\(\Delta \text{acnB} \text{litR::erm} \)). In each panel, error bars indicate standard deviation (some too small to visualize) \((n = 3)\). Asterisks indicate \(P < 0.01 \) with a Student’s \(t \)-test comparing the \(\Delta \text{acnB} \) with the parent strain. Each panel is representative of at least three independent experiments.

\textbf{Fig. 7.} The role of \(gacS \) in bright luminescence of the \(\Delta \text{acnB} \) mutant.

Having shown elevated CsrB levels in the \(\Delta \text{acnB} \) mutant, we predicted that bright luminescence of the \(\Delta \text{acnB} \)
The role of CsrBs in bright luminescence of the ΔacrB mutant.

A. CsrB copy numbers for RNA isolated from cultures of wild type (WT) (dark gray), ΔacrB (white) and acetoin mutan suppressor, ΔacrB gltA (light gray), grown aerobically in SWTO medium at 24°C with shaking. Cells were harvested at an OD595 of ∼1.0 for RNA isolation. Primer sets were exact matches to CsrB1 or CsrB2, with between one and three mismatches to the other CsrB. We cannot rule out cross-hybridization and amplification of the non-target CsrB reflected in the Y-axis values. Values for each treatment are the average of biological triplicates. Error bars indicate standard error and asterisks denote statistically significant difference from WT; *P < 0.03 using a Student’s t-test on log-transformed data.

B. Peak luminescence of cultures grown aerobically in SWTO medium. ΔcsrB indicates deletion of both csrB1 and csrB2. Strains tested include ES114 (WT), JB26 (ΔacrB), ANS62 (ΔcsrB1 ΔcsrB2), ANS70 (ΔacrB, ΔcsrB1 ΔcsrB2), ANS62.1 (ΔcsrB1 ΔcsrB2 csrAR6L), ANS81 (ΔcsrB1 ΔcsrB2 csrAR6L ΔacrB). Error bars indicate standard deviation (though some are too small to visualize) (n = 3), and the asterisk denotes statistically significant difference from the respective acnB+ parent strain; **P < 0.001 using a Student’s t-test. Data in B are representative of at least three independent experiments.

Intracellular citrate regulates the lux operon

Role of Csr system in regulating luminescence

In addition to illustrating that the effect of the ΔacrB allele on luminescence is dependent on the csrB genes, the values of the luminescence data in Fig. 8B also provide insight into the Gac/Csr system in V. fischeri and the earlier observation that gacA mutants are dim (Whistler and Ruby, 2003). If GacA functions primarily by promoting transcription of the csrB genes, then we would predict that the csrB null mutant would likewise be dimmer than wild type. Consistent with this prediction, the csrB null mutant is 800-fold dimmer than ES114 (Fig. 8B). Similarly, if the CsrBs function primarily by titrating CsrA to relieve direct or indirect repression of lux, then a partial-loss-of-function
csrA mutant would be brighter than the parent. Indeed, the csrA^{rel} allele increased luminescence ∼ 4000-fold in the csrB null background (Fig. 8B). Although the mechanism(s) connecting Csr to luminescence require further investigation, the data in Fig. 8B are consistent with CsrA repressing luminescence either directly (Ballok, 2007) and/or indirectly (Williams et al., 2012).

GacS but not CsrB RNAs are required for citrate accumulation in ΔacnB mutants

We hypothesized that Gac and Csr mediate a response to citrate accumulation; however, the epistatic effects of csrB and gacS mutations on the aconitase mutant would also be consistent with Gac and Csr alternatively or additionally mediating citrate accumulation itself. We did not detect citrate accumulation in ΔacnB mutants also lacking gacS, suggesting that Gac regulates citrate synthesis and that gacS is required for citrate accumulation in the ΔacnB mutant (Table 1). Importantly though, the ΔacnB mutant lacking csrB genes did accumulate elevated levels of citrate (Table 1), yet this strain did not have elevated luminescence (Fig. 8B).

Discussion

Upon investigating the mechanism underlying the bright luminescence of *V. fischeri* aconitase mutants, we identified an intriguing link between aconitase, citrate (the substrate for aconitase) and regulation mediated by the Gac/Csr system. First, we found that genetic and physiological conditions correlating with accumulation of citrate also corresponded with bright luminescence. Although citrate and other chelators can influence luminescence through a fur- and illR-dependent mechanism (Septer et al., 2013), our results here indicate that such a mechanism cannot explain most of the enhancement of luminescence observed in an aconitase mutant. However, we did observe that the effect of an acnB mutation on luminescence was entirely dependent on gacS and csrBs.

Our study indicated that the Gac/Csr regulatory cascade in *V. fischeri* appears to follow a predicted model (Fig. S2) based on what has been described in other organisms, but with an unexpected finding that is important for interpretation of our results: gacS and gacA mutants have dissimilar phenotypes. Compared with wild type, gacA mutants grow more slowly, are less luminescent and do not colonize the host as well (Whistler and Ruby, 2003); however, the ΔgacS mutant had wild type-like growth, luminescence (Fig. 7) and symbiotic colonization (Fig. S3). These data indicate that there is a GacS-independent element to the Gac/Csr system and suggest that either unphosphorylated GacA can activate csrB expression, or that GacA may be phosphorylated by acetyl-phosphate as described for *E. coli* (Tomenius et al., 2005) or by another sensor kinase in the absence of GacS. Suzuki et al. similarly reported that in *E. coli*, mutating uvrY (the gacA homolog) had more severe effects on csrB transcription than did mutating barA (the gacS homolog) (Suzuki et al., 2002).

Other results were consistent with the prevailing model of Gac/Csr function (Fig. S2) and clearly connected the luminescence phenotype of the acnB mutant with the Gac/Csr system. We found that the csrB null mutant did resemble the reported phenotypes of a gacA mutant, and these phenotypes, including dim luminescence, could be suppressed by a point mutation in csrA. The more novel and unexpected findings here were that the effect of the ΔacnB mutation on luminescence correlated with an increase in CsrB levels (Fig. 8A) and was eliminated in the csrB null background (Fig. 8B). Even when a point mutation in csrA suppressed the overall dimness of the csrB null strain, luminescence in the resulting mutant was unaffected by deleting acnB (Fig. 8B). Taken together, our results are consistent with a model whereby the Gac/Csr system mediates the effect of acnB on lux regulation.

The effects of the ΔacnB mutation were also strongly correlated with citrate accumulation, and were abrogated by mutations in gltA that prevented citrate accumulation. Further research is necessary to determine the mechanism(s) reflected in this observation and its role, if any, in symbiotic colonization. It is possible that citrate itself stimulates the Gac system, either by influencing GacS or through the apparent GacS-independent function of GacA and CsrB noted above. On the other hand, a metabolomic comparison of ΔacnB and ΔacnB ΔgltA mutants might reveal differences other than citrate accumulation, which in turn could provide the direct link to the Gac/Csr system. For example, citrate can inhibit pyruvate kinase, so elevated citrate might influence GacS activation indirectly by affecting phosphoenolpyruvate or pyruvate levels. Alternatively, buildup of oxaloacetate, which is a substrate for GltA, rather than citrate, might alter carbon flow in the absence of a canonical TCA cycle (Fig. S1B). The Gac/Csr system could respond to such an effect rather than to the accumulation, or not, of citrate per se.

Although much is known about the genes regulated by the Gac/Csr cascade in many organisms (Lapouge et al., 2008; Timmermans and Van Melderden, 2010), the signal(s) responsible for modulating this system have remained unclear. Dubuis and Haas showed that a signal produced by *Vibrio harveyi* activates Gac in *Pseudomonas fluorescens* (Dubuis and Haas, 2007), indicating the signal may be conserved. Consistent with our results, others have proposed that GacS activation may be linked to an imbalance in TCA cycle intermediates (Takeuchi et al., 2009), while another study suggested the signal could be cytoplasmic (Zuber et al., 2003). Findings
in *Pseudomonas* showed that synthesis of the Gac-activating signal required the Gac two-component system itself (Kay et al., 2005), consistent with our observation that citrate did not accumulate in a gacS acnB mutant. Alternatively, short chain acids have been suggested as the stimulus for GacS (BarA) (Chavez et al., 2010). Arguably, however, the signal(s) controlling the GacS sensor kinase activity has remained uncertain.

Given the intense interest in Gac/CsrA, including various mutant screens aimed at finding the signal/cue for GacS, we were surprised that aconitase mutants and their citrate accumulation had not previously been noted as affecting Gac/Csr. A plausible explanation may be that most of the bacteria used in those studies contain two or three copies of aconitase (Table S2). This functional redundancy would likely prevent mutant-based approaches from discovering a link between aconitase and Gac. Similarly, studies with aconitase mutants either reported suppressor mutations in the citrate synthase gene or deliberately inactivated *gltA* to prevent citrate accumulation (Gruer et al., 1997; Viollier et al., 2001; Li et al., 2008; Koziol et al., 2009; Baumgart et al., 2011). Thus, it is easy to understand how a connection between Gac/Csr regulation and blocking the TCA cycle specifically at aconitase has not been made previously.

Because aconitase requires an iron-sulfur cluster for enzymatic activity, disruption of this essential cofactor through iron limitation or direct inactivation by reactive oxygen species (ROS) can result in loss of aconitase activity and concomitant citrate accumulation. For example, in *E. coli*, oxidative inactivation of AcnB led to elevated intracellular citrate levels (Varghese et al., 2003). High levels of this TCA cycle intermediate would likely signal a major disturbance in central carbon metabolism. Activating the Gac/Csr regulatory cascade may allow cells to divert carbon flow away from glycolysis and increase levels of glycogenesis enzymes to allow a shift toward carbon storage until the cell is able to recover from the ROS damage and restore aconitase activity. Citrate has also been reported as an inhibitor of the enzyme pyruvate kinase (Ozaki and Shiio, 1969), which converts phosphoenolpyruvate to pyruvate, and this mechanism might further enhance the shift of carbon away from the TCA cycle.

The conditions known to affect aconitase activity have parallels in infection models. Many hosts generate ROS in response to infecting bacteria and also confront bacteria with an iron-limiting environment. If either of these conditions disrupted aconitase activity, subsequent Gac activation would explain a unifying role for Gac as both an important regulator of central carbon metabolism and host colonization. For bacteria that must switch between free-living and host-associated lifestyles, loss of aconitase activity due to ROS or low iron encountered in host tissue would signal a major environmental change. We speculate that the Gac/Csr regulatory cascade may be conserved in host-associated γ-proteobacteria to monitor for the metabolic effect(s) of losing aconitase activity.

Given the requirement of *gacA* for host colonization by *V. fischeri* and the tractability of this symbiosis (Stabb, 2006), future work in this system may uncover how this conserved and important regulatory system controls gene expression during natural symbiotic colonization. A connection of Gac/Csr to luminescence, which is a symbiotic colonization factor, has been established previously (Whistler and Ruby, 2003). Our data indicate the native LuxR-LuxI system is required for CsrA to repress luminescence (Figs 1 and S5) consistent with CsrA directly or indirectly negatively regulating *luxR* and/or *luxI*. At least two mechanisms have been proposed for such regulation: that CsrA modulates *luxR* expression (Williams et al., 2012) or that CsrA directly binds the *lux* operon transcript (Ballok, 2007). Ongoing studies will provide greater insight into the regulation of symbiotic bioluminescence in *V. fischeri* and the role of Gac/Csr.

Experimental procedures

Bacterial strains, media and growth conditions

Vibrio fischeri strains were all derived from the squid isolate ES114 (Boettcher and Ruby, 1990), and grown in either Luria Bertani Salt (LBS) medium (Stabb et al., 2001), Artificial Sea Water Tryptone (ASWT) (Septer et al., 2011) or Sea Water Tryptone Marine Osomolality (SWTO) medium (Bose et al., 2007) at 28°C or 24°C. *E. coli* strains were grown in either Luria Bertani (LB) medium (Miller, 1992) or Brain Heart Infusion (Difco) at 37°C. Antibiotic selection for *V. fischeri* and *E. coli* strains was as described previously (Dunn et al., 2005). Plasmids that contained the R6Kγ origin of replication but not the ColE1 origin of replication were maintained in *E. coli* strain DH5αpir (Dunn et al., 2005) and plasmid pEVS104 (Stabb and Ruby, 2002) was maintained in strain CC118pir (Herrero et al., 1990). All other plasmids were maintained in *E. coli* strain DH5α (Hanahan, 1983).

Mutant and plasmid construction

Select bacterial strains and plasmids used in this study are presented in Table 2. Oligonucleotide sequences are provided in Table S3. The construction of the plasmids and engineered mutants is described in Supporting Information, and several strains and plasmids used as intermediates or tools for genetic manipulations are described in Appendix S1. For mutant construction in *V. fischeri*, mutant alleles were mobilized on plasmids into recipients by triparental mating using CC118 λpir (Herrero et al., 1990). Potential mutants were screened for allelic exchange using PCR and appropriate antibiotic resistance markers.

To isolate suppressor mutants in the *csrB* knockout mutant, strain ANS62 was streaked onto LBS plates and incubated at room temperature until large colonies became visible. These
Table 2. Key strains and plasmids used in this work.

<table>
<thead>
<tr>
<th>Strains or plasmids</th>
<th>Relevant characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC118pir</td>
<td>Δ(ara-leu) araD lac74 galE galK phoA2O thi-1 rpsE rpsB argE(Am) recA λpir</td>
<td>Herrero et al., 1990</td>
</tr>
<tr>
<td>DH5α</td>
<td>F′/endA1 hsdR17 mcrA mcrB dcm lacI21598 galK F′λpir</td>
<td>Hanahan, 1983</td>
</tr>
<tr>
<td>DH5αpir</td>
<td>λpir derivative of DH5α</td>
<td>Dunn et al., 2005</td>
</tr>
<tr>
<td>Vibrio fischeri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES114</td>
<td>Wild-type V. fischeri</td>
<td>Boettcher and Ruby, 1990</td>
</tr>
<tr>
<td>ANS28</td>
<td>ES114 ΔleuCD lacB</td>
<td>This study</td>
</tr>
<tr>
<td>ANS28.1</td>
<td>ES114 ΔleuCD ΔacnB suppressor mutant</td>
<td>This study</td>
</tr>
<tr>
<td>ANS28.2</td>
<td>ES114 ΔleuCD ΔacnB suppressor mutant</td>
<td>This study</td>
</tr>
<tr>
<td>ANS28.3</td>
<td>ES114 ΔleuCD ΔacnB suppressor mutant</td>
<td>This study</td>
</tr>
<tr>
<td>ANS28.4</td>
<td>ES114 ΔleuCD ΔacnB suppressor mutant</td>
<td>This study</td>
</tr>
<tr>
<td>ANS28.5</td>
<td>ES114 ΔleuCD ΔacnB suppressor mutant</td>
<td>This study</td>
</tr>
<tr>
<td>ANS28.6</td>
<td>ES114 ΔleuCD ΔacnB suppressor mutant</td>
<td>This study</td>
</tr>
<tr>
<td>ANS29</td>
<td>ES114 lacP P_{A_{132}}-lacZΔacnB</td>
<td>This study</td>
</tr>
<tr>
<td>ANS60</td>
<td>ES114 ΔgltA</td>
<td>This study</td>
</tr>
<tr>
<td>ANS61</td>
<td>ES114 ΔgltA ΔacnB</td>
<td>This study</td>
</tr>
<tr>
<td>ANS62</td>
<td>ES114 ΔcsrB1 ΔcsrB2</td>
<td>This study</td>
</tr>
<tr>
<td>ANS62.1</td>
<td>ES114 ΔcsrB1 ΔcsrB2 csrA^{R6L}</td>
<td>This study</td>
</tr>
<tr>
<td>ANS64</td>
<td>ES114 ΔgacS, gacS (VF-2082) gene deletion</td>
<td>This study</td>
</tr>
<tr>
<td>ANS70</td>
<td>ES114 ΔacnB ΔcsrB1 ΔcsrB2</td>
<td>This study</td>
</tr>
<tr>
<td>ANS73</td>
<td>ES114 ΔacnB1 ΔcsrB2 lacP P_{A_{132}}-lacZΔacnB</td>
<td>This study</td>
</tr>
<tr>
<td>ANS74</td>
<td>ES114 ΔacnBΔgacS</td>
<td>This study</td>
</tr>
<tr>
<td>ANS79</td>
<td>ES114 ΔacnB litR:erm</td>
<td>This study</td>
</tr>
<tr>
<td>ANS81</td>
<td>ES114 ΔacnB1 ΔcsrB2 csrA^{R6L} ΔacnB</td>
<td>This study</td>
</tr>
<tr>
<td>JB19</td>
<td>ES114 litR:erm</td>
<td>Bose et al., 2007</td>
</tr>
<tr>
<td>JB22</td>
<td>ES114 lacP P_{A_{132}}-lacZΔacnB</td>
<td>Bose et al., 2008</td>
</tr>
<tr>
<td>JB26</td>
<td>ES114 ΔacnB:VF-2156 gene deletion</td>
<td>This study</td>
</tr>
<tr>
<td>JB26.1</td>
<td>ES114 ΔacnB suppressor mutant</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAKD702</td>
<td>Promoterless lacZ, orlV${E{SD135}}$, orlT, CmR</td>
<td>Bose et al., 2011</td>
</tr>
<tr>
<td>pAKD912</td>
<td>P_{rebAC}lacZ, orlV${E{SD135}}$, orlT, KmR</td>
<td>Septer et al., 2011</td>
</tr>
<tr>
<td>pAS37</td>
<td>ΔleuCD allele; orlV${E{SD135}}$, orlT, KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pAS79</td>
<td>ΔcsrB1 allele; orlV${E{SD135}}$, orlT, KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pAS80</td>
<td>ΔcsrB2 allele; orlV${E{SD135}}$, orlT, KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pAS106</td>
<td>ΔgltA allele; orlV${E{SD135}}$, orlT, KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pAS118</td>
<td>ΔgacS allele; orlV${E{SD135}}$, orlT, KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pJLB170</td>
<td>pAKD702 containing the luxR promoter region, orlV${E{SD135}}$, orlT, CmR</td>
<td>Bose et al., 2011</td>
</tr>
<tr>
<td>pJLB171</td>
<td>pAKD702 containing the luxl promoter region, orlV${E{SD135}}$, orlT, CmR</td>
<td>Bose et al., 2011</td>
</tr>
<tr>
<td>pVSV105</td>
<td>orlV${E{SD135}}$, orlT, KmR</td>
<td>Dunn et al., 2006</td>
</tr>
</tbody>
</table>

a. AmpR, ampicillin resistance; CmR, chloramphenicol resistance; ErmR and erm, erythromycin resistance; KnR, kanamycin resistance.

Colonies were re-streaked and the suppressor mutants, including ANS62.1, were stored at −80°C. The csrA locus, including 210 bp upstream of the ATG start and 26 bp downstream of the TAA stop codon, from ANS62.1 was PCR-amplified, cloned and sequenced (see Supporting Information), revealing a single base change resulting in an Arg to Leu amino acid change at the sixth codon, and we named this allele csrAR6L. The ΔacnB allele was moved into strain ANS62.1 (csrB csrAR6L) to generate ANS81 (see Supporting Information).

Luminescence assays

Vibrio fischeri cultures were grown overnight in LBS medium with antibiotic to maintain plasmid selection when necessary and diluted 1:1000 into SWTO medium with supplementation as indicated, and incubated at 24°C with shaking at 200 rpm, either in aerobic shake flasks or anaerobic bottles, as indicated. At indicated time points, 0.5 ml of samples was removed and cell density (OD$_{595}$) was measured using a BioPhotometer (Brinkman Instruments, Westbury, NY, USA). The cuvette was shaken to aerate the sample prior to measuring luminescence using a GLOMAX 20/20 luminometer (Promega, Madison, WI, USA) with a 10 s integration setting. Luminescence values were normalized to cell density and thereby reported as specific luminescence (luminescence/OD$_{595}$).

β-galactosidase reporter assays

Vibrio fischeri strains harboring plasmid-based lacZ reporters were grown as described above to the indicated cell density.

© 2014 John Wiley & Sons Ltd, Molecular Microbiology, 95, 283–296
Cells were harvested by centrifugation and frozen overnight at −80°C. End-point β-galactosidase assays were performed using 2-Nitrophenyl β-D-galactopyranoside (ONPG) as the substrate as described previously (Bose et al., 2008).

Whole-genome resequencing

Genomic DNA was isolated from wild-type ES114 and from suppressor mutants using a phenol : chloroform protocol. Cells in 3 ml of overnight culture of V. fischeri grown in LBS medium were pelleted, resuspended in 500 μl of TE50 (50 mM Tris pH 7.5, 50 mM Ethylenediaminetetraacetic acid [EDTA] pH 8) and frozen at −80°C. Twenty-five microlitre of fresh lysozyme solution (10 mg lysozyme per millilitre of 10 mM Tris pH 8) was added to the frozen cells, which were allowed to thaw in a room temperature water bath with gentle mixing. Cell lysate was frozen at −80°C overnight and thawed the next day in a room temperature water bath with gentle mixing. One hundred microlitre of STE (0.5% sodium dodecyl sulphate [SDS] in TE50) was added along with 35 μl of fresh proteinase K (2 mg proteinase K per milliliter DNase-free water). The solution was mixed gently and incubated at 55°C for 1 h with occasional mixing. Ten microlitre RNase A (10 mg ml⁻¹ in DNase-free water) was added followed by an additional 10 min incubation at 55°C. Two hundred microlitre of 5 M sodium perchlorate was added followed by gentle mixing. Six hundred forty microlitre Tris-equilibrated phenol : chloroform (1:1 mixture of phenol and chloroform with phenol buffered to pH 7.8–8.0) was added, mixed by inversion, and phases were separated by centrifuging at 12 800 × g for 10 min. The aqueous phase was transferred into a new tube and the phenol : chloroform extraction repeated as described above. The aqueous phase was then extracted with 600 μl of chloroform and phases separated by centrifugation at 12 800 × g for 10 min. Chloroform extraction was repeated and DNA was recovered using alcohol precipitation and washed several times with 70% ethanol. The DNA was resuspended in Tris EDTA (TE) buffer and stored at −80°C.

DNA quality and quantity were determined by measuring the ratio of absorbance at 260 nm and 280 nm, and by running DNA samples on a Tris-acetate-EDTA (TAE) agarose gel with plasmid standards. DNA was randomly sheared into ~200 bp fragments and the resulting fragments were used to create an Illumina library. This library was sequenced on an Illumina GAIIx sequencer generating 36 bp single end reads generating Information). CsrB copy number was determined using a standard curve with the respective target sequence cloned into pCR-BluntII-TOPO vector as template. The standard curve reactions covered a six-log dilution series and reaction efficiency for csrB1 (98%) and csrB2 (106%) fell within the desired range of 90–110%. Results in Fig. 8A show the average log-transformed data from three independent biological replicates per strain.

Citrate assays

Vibrio fischeri cultures were grown as indicated above for luminescence assays. At an OD₅₉₅ of ~1.0, the colony-forming units (CFU) ml⁻¹ was determined by dilution plating, and a 14 ml of sample was removed, chilled on ice and then centrifuged for 10 min at 15 300 × g at 4°C to pellet cells. The supernatant was removed and cells were lysed by resuspending the pellet in 350 μl of water and incubated at room temperature for 10 min. Cell lysate was centrifuged to remove cell debris and the supernatant was stored at 4°C overnight. Citrate levels in cell lysates were determined using the BioVision (Mountain View, CA, USA) citrate assay kit, following manufacturer’s instructions for the fluorometric protocol and a Synergy 2 plate reader with Gen5 software (BioTek).

Estimation of ΔacnB suppression rate

To estimate the frequency of suppression of the ΔacnB mutant slow-growth phenotype, ΔacnB mutant cultures were first grown in nonselective conditions, specifically on LBS agar plates in an anaerobic jar at 28°C for ~24 h. Some colonies were then scraped off the plates, resuspended and dilution-plated to determine CFU per colony, and the plates were then allowed to incubate aerobically at 28°C for 2 more days. Growth of suppressor sectors on specific ΔacnB mutant colonies was then scored, facilitated by a low-magnification microscope. We determined the number of suppressors evident per acnB colony, which together with the CFU per ΔacnB colony determined at the start of aerobic incubation allowed us to estimate the frequency of suppressor mutant per ΔacnB mutant CFU.
Squid colonization assays

Colonization of *E. scolopes* by *V. fischeri* was performed essentially as previously described (Stabb and Ruby, 2003). Briefly, *V. fischeri* cultures were grown unshaken in ASWT broth at 28°C to an OD₅₉₅ of 0.3–0.8 and then diluted in Instant Ocean (United Pet Group, Cincinnati, OH, USA) to a similar inoculum density <3000 CFU ml⁻¹ for the strains being compared. Aposymbiotic *E. scolopes* hatchlings were added to the inoculum water overnight and transferred the next morning to *V. fischeri*-free Instant Ocean. After 24 h, squid were homogenized and plated to determine CFU per squid.

Acknowledgements

We would like to thank Lawrence Shimkets, Diana Downes, Anne Dunn and Jorge Escalante-Semerena for helpful discussions, and Christa Pennacchio, and Wendy Schackwitz at the Joint Genome Institute for assisting with whole-genome resequencing. This research was supported by the National Science Foundation (NSF) under grant CAREER MCB-0347317, IOS-0841480 and IOS-1121106. ANS was supported by funds awarded by the University of Georgia Graduate School and the DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Genome resequencing was conducted by the U.S. Department of Energy Joint Genome Institute supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

Tang, Y., Guest, J.R., Artyumiuk, P.J., and Green, J. (2005) Switching aconitase B between catalytic and regulatory

Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s web-site.