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Abstract 

Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium 
Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated 
the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the 
introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent 
restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene 
replacement, we constructed a non-luminous strain of V. fischeri (AluxA::erm). In addition, we used the transducing phage rp-1 
for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able 
to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages 
of colonization, luminescence per se is not an essential factor for the symbiotic infection. 
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I. Introduction 

The bioluminescent bacterium Vibriofischeri colonizes 
the nascent light organ of juveniles of the sepiolid squid 
Euprymna scolopes, and establishes a long-term coopera- 
tive symbiosis (McFall-Ngai and Ruby, 1991). This 
benign infection occurs within a few hours of the squid's 
hatching, and results in a monospecific population of 
about a million V. fischeri symbionts within 12 h. The 
progress and extent of colonization can be measured 
either by counting the number of colonies that arise 
from a homogenate of the squid's light organ, or by 
simply monitoring the amount  of luminescence emitted 
by the animal (Ruby and Asato, 1993). This association 
is an easily studied model for the benign infection of 
animal tissue, during which both the bacterium (Ruby 
and Asato, 1993) and the host (McFall-Ngai, 1994) 
undergo a program of developmental changes. Clearly, 
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both organisms are responding to the presence of the 
other, presumably through the expression and recogni- 
tion of specific signaling molecules; however, none of 
these putative signals has yet been identified. 

One way of identifying such factors is to search for 
bacterial genes that are induced specifically during the 
symbiotic interaction. Luminescence (or lux) genes have 
been used in other systems to monitor bacterial infection 
and developmental processes in a non-disruptive manner 
(Contag et al., 1995; Shaw and Kado, 1986; Wolk et al., 
1991). Specifically, the luxAB genes of Vibrio harveyi 
have been inserted into transposons for use as promoter- 
less reporter genes (Guzzo and DuBow, 1991; Sohaskey 
et al., 1992). To apply such a technique in the V.fiseheri- 
E. scolopes symbiosis, the naturally occurring luxA gene 
would first have to be removed. We report here the 
construction of a luxA-deletion derivative of strain 
ESl14, a V. fischeri strain isolated from the light organ 
of E. scolopes (Boettcher and Ruby, 1990). The work 
presented here (i) demonstrates that no selection for a 
bioluminescence capacity occurs during the initiation of 
a light organ symbiosis and (ii) establishes new tech- 
niques for DNA transfer, gene replacement, and trans- 
duction in symbiotic strains of V. fischeri. 
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2. Results and discussion 

2.1. Electroporation of V. fischeri strains 

The source of DNA for our initial electroporation 
experiments was pSUP102, a small, mobilizable plasmid 
vector that can be stably maintained in V. fischeri. 
Plasmid DNA isolated from V. fischeri strain ESR1 
(Graf et al., 1994) carrying pSUP102 (designated 
pSUPI02 [vf]) was used in electroporation experiments 
designed to establish the optimal conditions for electro- 
poration of ESR1. The highest number of transformants 
was obtained when V. fischeri cells grown at 28°C to an 
early exponential growth phase (an optical density of 
0.3 at 600 nm) were harvested at 4°C and washed twice 
in a buffered sucrose solution (272 mM sucrose, 1 mM 
MgC12, and 7 mM potassium phosphate, pH 7.4). The 
cells were most efficiently transformed when subjected 
to electroporation under a range of low voltage condi- 
tions (0.60-0.80 kV) at 400 £2. Amounts of DNA over a 
100-fold range (from 2.4 ng to 240 ng) yielded between 
104 and l0 s transformants per #g of DNA using plasmid 
pSUP102 (vf) as a source of DNA. 

We investigated whether the electroporation condi- 
tions that we had developed for ESR1 would also allow 
transformation of several natural isolates of V. fischeri. 
ESll4 ,  the parent strain of ESR1, was successfully 
transformed with pSUP102 DNA isolated from ESR1. 
Transformation was achieved for strain ES213, but not 
for strain ES235, both of which are wild-type isolates 
from different adult specimens of E. scolopes (Boettcher 
and Ruby, 1990,Boettcher and Ruby, 1994). Trans- 
formation was also not detectable when the recipient 
was M J1, a V. fischeri strain obtained from the light 
organ of the fish M. japonica. While we found that 
crucial parameters for efficient electroporation of ESR1 
included a rapid growth rate of the cells and harvesting 
at an early growth phase, it is likely that different 
conditions are more appropriate for electroporation of 
other isolates of V. fischeri. 

2.2. Barrier to foreign DN A uptake by V. fischeri ESR1 

There are many procedures for which the direct 
transfer of DNA from E. coli to V. fischeri would be of 
considerable advantage. Thus, it was unfortunate that 
when plasmid DNA isolated from E. eoli strain CSH52 
(pSUP102 [ec]) was used in the electroporation of ESR1, 
no transformants were obtained. However, if the DNA 
was isolated from a dam- E. coli strain, which does 
not methylate its DNA, a low but detectable num- 
ber of transformants was observed (4.4x 101 trans- 
formants//~g). 

In order to increase our effectiveness at transforming 
V. fischeri using E. coli DNA, we screened for naturally 
arising electroporation-mutant strains that had an 

increased ability to take up DNA. Electroporation trans- 
formants of ESR1 that had taken up plasmid DNA 
(either vf or ec) were isolated, and streaked on a non- 
selective medium and then screened to obtain isolates 
that had lost the plasmid. Three ESR1 derivatives were 
sequentially isolated. The first two strains remained 
essentially unable to be transformed by pSUP102 (ec) 
but the third derivative, KV98, could be transformed 
by DNA isolated from either dam + (4.6x 103 
transformants/#g) or dam- (1.0 x 104 transformants//~g) 
E. coli strains. This strain was subsequently used as a 
recipient for the introduction of DNA directly from E. 
coli into V. fischeri. 

Because efficient transformation of wild-type V.fischeri 
occurred only when the source of plasmid DNA was V. 
fischeri, it seems likely that there is a restriction barrier 
between V. fischeri and E. coli. We hypothesize that the 
uncharacterized mutation(s) that allows KV98 to be 
transformed by E. coli DNA is in a restriction system. 
Ideally, as with E. coli restriction- modification + clon- 
ing strains, it would be useful to have a V. fischeri strain 
through which E. coli DNA could be shuttled for appro- 
priate modification before electroporation into the recip- 
ient strain of interest. We have been unable, however, to 
transfer plasmid DNA from KV98 to its parent strain, 
ESR1. One possibility for these results is that KV98 is 
defective in genes for both DNA restriction and modifi- 
cation functions. 

2.3. Plasmid stability in V. fischeri strains 

Although it was possible to obtain many trans- 
formants of KV98 using pSUP102 DNA, the same was 
not true when plasmid pSUP202 was used. Plasmid 
pSUP202 is derived from pBR322, which in E. coli is 
maintained at a higher copy number than is pACYC184, 
the plasmid from which pSUP102 is derived, and uses a 
different origin of replication. It was not clear whether 
the bias observed against pSUP202 was due to a natural 
instability of this plasmid in V.fischeri, or to an enhanced 
ability of KV98 to replicate pSUP102 due to the manner 
in which the strain was selected. In order to determine 
whether KV98 and its parent ESR1 had similar replica- 
tion biases, we quantified the abilities of these two strains 
to take up pSUP102 and pSUP202 by conjugation using 
an established method (Dunlap, 1989; Graf  et al., 1994; 
Simon et al., 1986). The data from three separate experi- 
ments showed that both strains have a 100-fold decrease 
in conjugation efficiency when selected for uptake of 
pSUP202 DNA as compared to pSUP102 DNA. 
Interestingly, KV98 exhibited a 2- to 4- fold greater 
ability than its parent to take up either plasmid. 

The stability of the two plasmids was compared by 
streaking V. fischeri cells carrying these plasmids on a 
non-selective medium, and then screening 100 of the 
resulting colonies on a selective medium for the presence 
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of the plasmid. The plasmid-carrying derivatives of ESR1 
and KV98 showed a high frequency of plasmid loss. 
Plasmid pSUP102 was lost by 69% (ESR1) or 75% 
(KV98) of the colonies examined, while pSUP202 was 
even less stable, being lost by 99% (ESR1) or 100% 
(KV98) of them. Perhaps the basis for this differential 
stability is the different origins of replication of the two 
plasmids. In any case, the high instability of the pSUP202 
plasmid makes it likely that pBR322-based plasmids will 
be useful as suicide vectors in V. fischeri. 

2.4. Gene replacement in a squid-symbiont strain of 
V. fischeri 

A luxA mutant of V. fischeri strain MJ1 has been 
reported (Kuo et al., 1994); however, MJ1 is not useful 
in the study of the squid symbiosis because it is incapable 
of successfully colonizing juvenile E. scolopes (Ruby and 
McFall-Ngai, 1992). To obtain a V.fischeri squid-symbi- 
ont strain that is defective in the ability to produce light, 
the technique of electroporation that we developed was 
used to facilitate gene replacement. Plasmid pHV200 is 
a pBR322-based vector carrying an 8.8-kb region of the 
lux operon of V. fischeri strain ESl14 that, when intro- 
duced into E. coli, allows this bacterium to be luminous 
(Fig. 1) (Gray and Greenberg, 1992). With the exception 
of the regulatory gene luxR, which is transcribed diver- 
gently, the eight lux genes, encoding the luciferase 
enzyme, enzymes for the synthesis of its substrates, and 
a regulatory protein, are grouped in a single operon 
(Meighen and Dunlap, 1993) (Fig. 1). The luxA gene is 
located in the middle of the lux operon and encodes one 
of the luciferase subunits. Plasmid pKV17, derived from 
pHV200, contains a replacement of part of the luxA 
gene with the gene for erythromycin resistance along 
with several kb of unaltered flanking DNA to facilitate 
homologous recombination (Fig. 1). V. fischeri strain 
KV98 was electroporated with plasmid pKV17, and 
both large and small colonies were obtained in selections 
on plates containing erythromycin. We postulate that 
the small colonies resulted from cells that carry, 
but have difficulty maintaining, the unrecombined 
pBR322-based plasmid. 

Three out of four large colonies examined appeared 
to have gained stable erythromycin resistance and were 
subsequently screened for the ability to produce light. 
Two of these, KV137 and KV138, were unable to 
produce light in culture, suggesting that the chromo- 
somal copy of the luxA gene had been successfully 
replaced with the erythromycin resistance gene 
(AluxA: :erm) (Fig. 1). Light production was restored 
when a plasmid carrying the luxA + gene under control 
of the lac promoter was introduced into KV137. In 
contrast, the third strain, KV139, was erythromycin 
resistant and visibly more luminous. We believe that this 
phenotype resulted from a single recombination event 

in this strain, leading to a tandem duplication of the lux 
region, one copy of which is wild type, while the other 
copy carries the AluxA: :erm replacement (Fig. 1). As 
expected for a strain carrying two copies of the lux 
positive regulatory genes (luxR and luxI), light pro- 
duction of KV139 was induced to a specific luminescence 
that was 100 times that of wild type. 

A Southern blot analysis was performed to confirm 
the mutations that occurred in strains KV137, KV138, 
and KV139. Digestion of chromosomal DNA from 
parent strains ESR1 (not shown) or KV98 with the SalI 
enzyme yields an 8.8-kb DNA fragment that contains 
the known lux operon. Insertion of the erm gene into 
the luxA gene resulted in the introduction of a second 
SalI site, such that digestion with SalI results in a 4.7-kb 
DNA doublet. The data (Fig. 2) was consistent with the 
occurrence of double (KV137 and KV138) and single 
(KV139) recombinational events in the lux region. These 
data confirm the usefulness of pBR322-based plasmids 
as suicide vectors for performing gene replacement in 
K fischeri. 

2.5. Symbiotic competence of the luxA mutants 

To determine whether derivatives of the electropora- 
tion variant strain KV98 would be useful in our studies 
of the symbiotic infection of E. scolopes, seawater con- 
taining individual juvenile squid was inoculated with 
cells of either wild-type ESll4 or KV98. The average 
extent of colonization (Ruby and Asato, 1993) by the 
two strains after 24 h was determined to be 7.3 x 105 
(ESl14) and 7.2 x 105 (KV98) CFU per animal. Thus, 
there was no evidence that KV98 was unable to infect 
E. scolopes in a normal manner. 

To determine whether the production of light by V. 
fischeri is required for successful colonization of E. 
scolopes, the dark mutants KV137 and KV138 were 
tested for their ability to symbiotically infect the light 
organ of juvenile squid. Although infection is typically 
accompanied by the onset of the production of host 
bioluminescence, no light was produced by E. scolopes 
juveniles that had been exposed to the AluxA: :erm 
strains (Fig. 3). Therefore, we assayed the extent of 
colonization by determining the numbers of CFU of V. 
fischeri in light organ homogenates of these juveniles 
after 24 h of infection. The data (Fig. 4) indicated that 
KV137 and KV138 cells were able to colonize E. scolopes 
to an extent that is similar to the colonization that 
occurs with the luminous strain ESR1. The wide range 
of colonization levels observed in Fig. 4 are typical for 
experiments like these (Lee and Ruby, 1994; Ruby and 
Asato, 1993) and are probably due to the relatively small 
sample sizes and the variations in the light organ size of 
individual juveniles (M. McFall-Ngai, personal com- 
munication). The data also suggested that the production 
of light is not a necessary prerequisite either for the 
initial infection, or for the rapid bacterial growth phase 
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Fig. 1. Construction of the AluxA::erm gene replacement mutant. The V. fischeri lux genes are arranged in two divergent transcriptional units, 
luxR and luxICDABEG, and are contained on an 8.8-kb DNA segment in pHV200. To construct a luxA deletion mutant, plasmid pKV17 was 
constructed from pHV200 and pLS3 by: (i) deletion of the StuI-XhoI segment (approximately 500-bp) internal to luxA; and, (ii) replacement of 
this segment with a 1.1-kb DNA fragment carrying the gene for erythromycin resistance from pLS3 digested with EcoRV and XhoI. The DNA 
fragments were separated by gel electrophoresis, purified using GeneClean (Biol01, Inc. Vista, CA) and the single-stranded ends of the DNA were 
filled in by treatment with the Klenow fragment of DNA polymerase (Sambrook et al., 1989). Following blunt-ended ligation of the two fragments, 
CaClz-competent cells of E. coil strain DH5e were transformed with the resultant mixture, and an ampicillin-containing medium was used tO 
select for cells carrying the correct recombinant plasmid. Ampicillin-resistant colonies were replica-printed to plates containing erythromycin to 
identify clones carrying the erythromycin resistance marker. Plasmid pKV17, purified from one clone, was then electroporated into strain KV98. 
Recombination into the V. fischeri chromosome at either site 1 or site 2 creates a tandem duplication, while recombination at both sites results in 
replacement of luxA with AluxA: :erm. The arrows indicate the direction of transcription of the gene for erythromycin resistance. Gene names 
are indicated. 

that  occurs in the first 2 4 h  of infection (Ruby and 
Asato, 1993), and thus, the AluxA:  :erm m u t a n t  is more  
than  adequate  to use as a recipient in our  search for 
symbiosis genes of V. fischeri that  are activated within 
the first 24 h of the symbiosis. 

While it would be interest ing to determine the coloni- 
zat ion abili ty of s train KV139, which carries a chromo-  
somal dupl ica t ion of the lux operon,  (one copy of which 
was wild type and  the other of which carried the 
AluxA:  :erm mutat ion) ,  we were unable  to do so accu- 
rately. The large (8.8 kb) region of identi ty result ing 
from the dupl ica t ion created a high potent ia l  for recom- 
b ina t ion  in this strain, and  our  pre l iminary results 

suggested that  dur ing  colonizat ion of the light organ, 
addi t ional  r ecombina t ion  events did occur at a suffi- 
ciently high frequency that  a mixture of strains, bright, 
dark or wild type for luminescence, resulted. This inher- 
ent genetic instabil i ty made it difficult to accurately 
determine the colonizat ion phenotype  of the dupl icat ion 
strain and  may speak to the condi t ions  the cells 
encounter  while in the light organ. 

2.6. Transduction of  markers in V. fischeri 

While the uncharacter ized mutat ion(s)  present in 
e lectroporat ion strain KV98 has appeared to be silent 
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Fig. 2. Southern blot analysis of the AluxA: :erm mutants. Lane 1, 
KV98 (luxA+); Lane 2, KV139 (luxA+/AluxA: :erm); Lane 3, KV137 
(AluxA::erm); Lane 4, KV138 (AluxA::erm); Lane 5, KV150 
(AluxA::erm). Methods: The Southern blot procedure (Ausubel et al., 
1987; Southern, 1975) was performed as follows: Chromosomal DNA 
was prepared (Graf et al., 1994) and digested with SalI. The 
DNA fragments were separated on a 0.6% agarose gel and transferred 
to a Nylon 66 plus (Hoeffer, San Francisco, CA) membrane. 
Prehybridization was carried out at 42°C in 5 x SSC, 50% formamide, 
10 x Denhardt's solution, and 250/zg/ml herring sperm DNA for 4 h. 
Hybridization was carried out in the same solution, with the addition 
of dextran sulfate (to a final concentration of 10%) and 32p-labeled 
probe DNA. The probe was a 3-kb HpaI fragment of DNA containing 
the luxD, luxA, and luxB genes (Fig. 1). 
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Fig. 3. Luminescence of dluxA: :erm mutants after colonization of 
juvenile E. scolopes light organs. Relative levels of light emission are 
shown for representative E. scolopes juveniles infected with ESll4 
(lux +, ©); KV98 (lux +, 0); KV137 (AluxA::erm, [~); KV138 
(AluxA: :erm, II); or an uninfected animal (A). Methods: To initiate a 
symbiotic light organ infection (Ruby and Asato, 1993), newly hatched 
E. scolopes juveniles were exposed to seawater containing cells of 
specific strains of V..fischeri for 16 h. Light emission from the juvenile 
E. scolopes was monitored every 2 h using an automated photometer. 
Background (dark current) values ranged from 500 to 3000 lumines- 
cence units over the course of the experiment. 
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Fig. 4. Extent of colonization of juvenile E. scolopes after inoculation 
with AluxA: :erm mutants. The total number of V. fischeri cells 
colonizing individual juvenile squid light organs at 24h post- 
inoculation was determined for squid infected with strains ESR1, 
KV137, KV138 or KV150. Methods: Juvenile E. scolopes were infected 
as described in Fig. 3 legend. Twenty-four hours later, the animals 
were washed by passage through sterile seawater and homogenized, 
and aliquots were plated onto SWT agar to determine the number of 
CFU as a measure of the extent of light organ colonization (Ruby 
and Asato, 1993). 

with respect to colonizat ion of E. scolopes, it is possible 
that the mutat ion(s)  may  affect a characteristic of the 
symbiosis that has not  yet been recognized. In  order to 
c i rcumvent  any  future problems resulting from using an 
uncharacter ized strain background,  we have utilized the 
generalized t ransduc ing  phage, rp-1 (Levisohn et al., 
1987), to move the AluxA:  :erm m u t a t i o n  present in 
KV138 into ESR1. The t ransduc t ion  was carried out 
using exponent ia l ly  growing ESR1 cells essentially as 
described (Levisohn et al., 1987), except that  the rp-1 
phage was not  UV-irradiated.  The result ing strain, 
KV150, was n o n - l u m i n o u s  in culture. Southern  blot  da ta  
(Fig. 2) show that  the t ransduced strain had the same 
4.7-kb lux D N A  fragments as did its parent ,  KV138. 
Squid infection assays demons t ra ted  that  a similar 
pat tern  of colonizat ion occurs when KV150 cells were 
used for inocula t ion  (Fig. 4). This is the first report  of 
the use of phage rp-1 since it was described in 1987, and  
both  confirms the t ransduc ing  character of this phage 
(by Southern  analysis of the t ransductant ) ,  and  demon-  
strates that  a 1-kb region of non -homology  (from the 
ant ibiot ic  resistance marker)  can be successfully trans-  
duced. The use of rp-1 to move genetic markers  in V. 
f ischeri  will greatly enhance our  abili ty to isolate and  
characterize the effect of muta t ions ,  such as those gener- 
ated by t r ansposon  mutagenesis.  

3. C o n c l u s i o n s  

We have developed condi t ions  for successful electro- 
pora t ion  of V. f ischeri  strains ESR1, E S l l 4 ,  and  ES213. 
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The same condi t ions  apparent ly  do not  work for strains 
M J1 or ES235. 

A restriction barrier  exists that  prevents transfer of 
foreign (E. coli) D N A  into V. fischeri strain ESR1. Only  
D N A  isolated from a dam strain of E. coli was able to 
t ransform ESR1. The restriction barr ier  was overcome 
by the selection of m u t a n t  strain, KV98, that  is trans- 
formed by plasmid D N A  isolated from E. coli. 

The stability of pACYC184-  and  pBR322-based plas- 
mids in ESR1 and  KV98 was investigated. The relative 
instabil i ty of pBR322-based plasmids made it likely that  
they would be useful as suicide vectors in V. fischeri. 

Elec t ropora t ion  was used to in t roduce into V. fischeri 
a pBR322-based plasmid carrying a AluxA: :erm cassette 
for gene replacement.  Both single and  double recombi-  
nan t  strains were obta ined  and  confirmed. The double 
r ecombinan t  strains were n o n - l u m i n o u s  in culture. 

The symbiotic competence of the AluxA:  :erm m u t a n t  
strains was assayed, and  found to be essentially no rma l  
(al though non- luminous )  after 24 hours  of colonizat ion.  
Thus,  the AluxA:  :errn m u t a n t  can be used as a recipient 
for a t r ansposon  mutagenesis  experiment  to hun t  for V. 
fischeri genes impor t an t  in the early stages of the 
symbiosis. 

T ransduc t ion  using the generalized t ransducing  phage 
rp-1 was developed as a technique for use in E. scolopes- 
symbion t  strains of V. fischeri. The AluxA:  :erm allele 
was successfully t ransduced into strain ESR1, al lowing 
this mu ta t ion  to be isolated from potent ial ly complicat-  
ing muta t ions  in the e lec t ropora t ion-var iant  strain 
KV98. 
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