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Abstract

The symbiosis between the luminous marine bacterium Vibrio fischeri and the Hawaiian sepiolid squid Eu-
prymna scolopes provides a model system for the study of signal exchange between bacteria and the hosts they
colonize. To identify bacterial genes specifically induced in response to colonization of host tissue, transposon
mutagenesis using luminescence (/ux) as a reporter of gene expression was performed in a luxA-mutant (i. e.,
dark) strain of symbiotically competent V. fischeri. The transposon was inserted randomly into the bacterium’s
chromosome, and the resulting transconjugants exhibited a wide range of luminescence levels when grown in
culture. The luminescence levels of approximately 1,500 individual insertion mutants were determined for
cells growing in culture and in the light organ of juvenile E. scolopes. About 40 % of these mutants produced
detectable amounts of luminescence in the squid, and of these, three strains were identified that appeared to
have an induced expression of luminescence during colonization of the host. The regions of DNA flanking the
transposon in cach of these mutants have been sequenced, revealing two identifiable (glpD and iucA) and one
unknown (cinA) gene that were disrupted by an insertion. These results indicate that during the first 24 hours
following entry into the light organ V. fischeri increases the expression of loci involved in both lipid metabo-
lism and siderophore production, as well as other, as yet undefined, functions. The increased expression of
these metabolic activities is consistent with previous studies of both the physiological conditions in the light
organ crypts, and colonization-induced genes in a diversity of bacterial pathogens.

Zusammenfassung

Die Symbiose zwischen dem lumineszierenden, marinen Bakterium Vibrio Jischeri und dem in Hawaii hei-
mischen Tintenfisch Euprymna scolopes dient als Modellsystem zur Erforschung des Signalaustauschs von
Bakterien mit den von ihnen kolonisierten Wirten. Um bakterielle Gene zu identifizieren, die speziell wih-
rend der Kolonisierung des Wirtes induziert werden, wurde eine Transposon-Mutagenese in einer fuxA(nicht
lumineszierenden)-Mutante des symbiotisch kompetenten Bakteriums V\{Zséﬁeri durchgefiihrt, die Luzifera-
se-Gene luxA und luxB dienten dabei als Reporter der Genexpression. Die Transposition erfolgte wahllos in
die genomische DNA des Bakteriums, die Lichtemissionswerte der resultierenden Transkonjuganten in Kul-
tur variierten daher erheblich. Die Lumineszenzcharakteristik von circa 1500 individuellen Insertionsmutan-
ten wurde sowohl in Kultur als auch im Lichtorgan von E. scolopes bestimmt. Etwa 40 % dieser Mutanten
produzierten nachweisbare Lumineszenzwerte im Wirt, von diesen wurden drei Stimme identifiziert, deren
spezifische Lumineszenz wihrend des Kolonisicrungsprozesses anstieg. Die das Transposon flankierende
DNA dieser drei Mutanten wurde sequenziert, durch die Sequenz konnten zwei Gene identifiziert werden,
die eine Transposoninsertion aufwiesen (glpD und iucA), ein Gen war jedoch nicht identifizierbar (cinA).
Diese Ergebnisse deuten darauf hin, daB wihrend der ersten 24 h nach dem Kontakt von V. fischeri mit dem
Lichtorgan von E. scolopes die Expression von Genen, die mit Fettmetabolismus, Siderophoreproduktion
und anderen, nicht definierten, Funktionen verbunden sind, ansteigt. Die gesteigerte Expression dieser meta-
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bolischen Aktivititen steht in Ubereinstimmung mit vorhergehenden Studien von sowohl den physiologi-
schen Bedingungen im Lichtorgan von E. scolopes als auch von kolonisierungsinduzierenden Genen einer
Vielzahl pathogener Bakterien.

1. Introduction

In their natural state all animals and plants maintain associations with a specific and
often obligate microbiota. While for a small number of microorganisms the interactions
are pathogenic, the vast majority are benign or even beneficial to their host. The nature
of these associations is often complex, both in the number of participants and the com-
munication by which the partners recognize and cooperate with each other. Thus, with
only a few exceptions (e. g., GAGE and MARGOLIN 2000, KOLENBRANDER et al. 2002),
only recently have the biochemical and molecular mechanisms characterizing these in-
teractions been accessible for study (McFALL-NGa1 2002).

When juveniles of the bioluminescent squid Euprymna scolopes first hatch, their nas-
cent light-emitting organs are bacteria-free; however, if Vibrio fischeri cells are present
in the ambient seawater, the organ will rapidly and specifically become colonized
(MCFALL-NGAI 1999). These bacteria colonize the tissue by entering pores on the sur-
face of the organ that lead to epithelium-lined crypt spaces in which the inoculum pro-
liferates (NYHOLM et al. 2000). Within 12 h the growing population of V. fischeri induces
the expression of its lux operon, which encodes the light-emitting, oxygen-requiring, en-
zyme luciferase, and the host becomes bioluminescent. As the colonization persists the
bacteria undergo additional differentiation: they become smaller and at least some of the
cells no longer produce polar flagella (RUBY and Asato 1993). The bacteria also trigger
a specific program of developmental changes in the tissues of the host (McFALL-NGAI
2002), and each morning 95 % of the bacterial population is expelled into the environ-
ment, leaving the remaining cells to repopulate the light organ by nightfall (BOETTCHER
et al. 1996, LEE and RUBY 1994a). Thus, both of the partners differentiate and change
aspects of their cellular behavior in response to the symbiosis. To better understand the
basis for these changes, and the signals underlying their action, we have developed a
method for identifying V. fischeri genes that are preferentially induced when the bacte-
rium initiates the colonization of the light organ.

In recent years a number of genetic tools have been developed to reveal genes that are
induced as a result of either pathogenic or cooperative bacterial colonization of host tis-
sue (LEE and Camirir 2000). Luminescence has been used effectively as a reporter of
gene expression in several systems, either to identify environmentally regulated genes,
or to characterize the expression patterns of specific genes (STEWART et al. 1996, Kricka
2000). Because the squid light organ is ideally suited for reporting the emission of lumi-
nescence, we chose the promoterless luciferase genes, luxAB (Visick and Rusy 1998, D.
MILLIKAN personal communication), to report the expression pattern of V. fischeri genes
during the first 24 h of the symbiotic interaction. Using this approach as a screen, several
genes were identified, whose expression appeared to be increased as the bacteria initiate
the colonization of the light organ crypts. The nature of these genes, and their encoded
enzymes, was consistent with other information obtained about the conditions present in
the light-organ environment.
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2. Results and Discussion

To adapt a luciferase-based detection system to the study of a luminous bacterium it was
first necessary to construct a luxA-null mutant of a symbiotic strain of V. fischeri. In this
way there would be no intrinsic light emission from the bacterium that would confound
the screen for induced promoters. Thus, the first step was to construct a AluxA mutant of
V. fischeri ES114 by gene replacement with an erythromycin resistance (erm) gene
(Fig. 1A) and test this mutant for the retention of symbiotic competence (VISICK and
RuBy 1996). We found that during the first 24 h after symbiosis the initiated level of
colonization by the AluxA::erm mutant (strain KV150) was similar to that of its parent
(Visick and RuBy 1996, Visick et al. 2000). This result suggested that the mutant’s use
in the preliminary identification of early symbiosis-induced genes would be feasible. In
addition we found that complementation with a plasmid carrying wild-type V. fischeri
luxAB genes under the control of the lac promoter restored luminescence to the mutant
(Visick and RuBy 1996, and data not shown). This latter finding indicated that the erm
insertion created no significant polar effect on the downstream (luxE) gene of the lux
operon (Fig. 1A4), which is required for the synthesis of aliphatic aldehyde, a substrate
of the luminescence reaction (HASTINGS and NEALSON 1977).

In the second step, a mini-transposon, Tn/0 (ALEXEYEV and SHOKOLENKO 1995), was
modified to carry a promoterless copy of the Vibrio harveyi luxAB genes and a chloram-
phenicol (Cam) resistance marker (Visick and RuBy 1997), as well as a R6K origin suit-
able for use in V. fischeri. When introduced by conjugation on a suicide vector, this trans-
poson inserted into the chromosome of V. fischeri KV150. The resulting transconjugant
strains were found to produce a range of levels of luminescence that presumably de-
pended upon promoter activity levels in the locus of the insertion (Fig. 1B).

s >
------- <m|—[luxl luxClluxD[luxATIuxB[IuxE Y-+
Luciferase and aldehyde synthesis
B Tn10:{uxAB
“« > >
....... WX’“‘-’XC“UXDQHT—I fUXBl IUX§>""'" @
Aldehyde synthesis ~Ldciferase synthesis

Fig. 1 Schematic illustration of the V. Jischeri lux operon. (A) The wild-type operon, composed of two di-
vergently transcribed units, lux/CDABE and luxR. Bacterial luciferase is encoded by luxAB, and enzymes re-
quired for the synthesis of the luciferase’s aldehyde substrate are encoded by luxCDE. The functions of luxi
and luxR are regulatory. (B) A AluxA mutant strain (KV150) was created by gene replacement with an eryth-
romycin resistance gene (erm). KV150 was the parent strain for mutagenesis by random insertion of a
miniTn/0::luxAB cassette that provided the JuxA function under the control of the promoter of the inter-
rupted gene (orfX).
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Using this system of mutagenesis 1.500 individual TnluxAB mutants were isolated, and
subsequent Southern analysis of a subset of them was consistent with a random pattermn
of insertion (data not shown). The relative luminescence level of each of these mutants
during growth in a conditioned medium (CM) (BOETTCHER and RuBY 1990) was deter-
mined and compared to that during initiation of colonization in juvenile squid. While
about 40 % of the strains produced detectable levels of light emission in the host, only
a small number of these appeared to have a markedly increased luminescence activity
celative to that in culture. The genetic locus in which several of these insertions oC-
curred was determined by partial sequencing of the regions of DNA flanking the trans-
poson, and comparing these results to the sequence of the V. fischeri genome (http://
ergo.integratedgenomics.com/GenomesNFL’). Strains with insertions in homologs of
two described genes (iucA and glpD), and one, colonization-induced gene A (cinA),
without a clear ortholog, were identified (Tab. 1).

Tab. 1 Extent of colonization by Tn/ 0::luxAB insertion strains of V. fischeri

Strain Genotype Putative Tn/0-interrupted gene function CFU;’orgaﬂ“J (% 10°)
KV 150  AluxA (Parent strain) 1.6 +/-0.9
(no Tnl0 insertion)
KV495 AluxA;Tnl0::iucA Siderophore synthesis 1.2 +-0.4
KV4906 AluxA; Tnl0::carB Arginine/pyrimidine synthesis 1.0+/-04
KV504 AluxA; Tnl0::glpD Aerobic glycerolipid catabolism 15+-0.7
KVsll AluxA; Tnl0::cinA Unknown 1.4 +/-0.6

[1] Determined as previously described (RuByY and Asato 1993), at approximately 22 h after the initiation
of colonization. Values are the averages of nine animals per treatment, plus or minus the standard error of
the mean.

To verify that these three promoters were activated during colonization relative to their
level of expression in culture, each candidate strain was matched with another transpo-
son-insertion strain that had the same growth rate and expressed approximately the same
level of luminescence in culture. The levels of luminescence of squids infected with
these matched strains were then compared during the first 22 h of colonization (Fig. 2).
Insertions in all three of these genes were induced t 8- to 10-fold relative to their
matched partner strain, while other genes (like carB) were not (Fig. 3).

To determine whether the insertion had an effect on the level of colonization, we
quantified the number of V. fischeri cells present in the light organ 22 h after coloniza-
tion (Tab. 1). There was no significant difference between the number of symbionts in
the light organs of animals colonized by any of the insertion mutants relative to the par-
ent AluxA strain, KV150. This result also indicates that the activities of the proteins en-
coded by these induced genes are not required to achieve normal levels of colonization
during at least the initial phase of the association.

The enzymes encoded by both iucA and glpD are involved in metabolic pathways found
in V. fischeri, and are consistent with what is known about the nutrition of this bacterium in
the symbiosis. For instance, the V. fischeri genome encodes a number of putative sidero-
phore synthetases, including IucA, homologs of which catalyze aerobactin synthesis in
Escherichia coli and other bacteria (Vokes et al. 1999). We determined that iucA was re-
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Fig. 2 Bioluminescence of strain KV504 (AluxA; Tnl0::glpD) during colonization of juvenile E. scolopes
squids. Animals were exposed to an inoculum of either KV504 (solid squares) or another transposon inser-
tion mutant strain that expressed a similar level of luminescence in culture (open diamonds). The light emis-
sion of the animals was measured periodically over the first 22 h after inoculation, providing an indication
of the interrupted gene’s promoter activity during colonization. Each point is the mean value of the light lev-
els of nine animals.

sponsible for siderophore synthesis in V. fischeri as well: growth on low-Fe medium contain-
ing the siderophore indicator CAS (LEE and RUBY 1994b) revealed the absence of detectable
Fe-scavenging activity in the V. fischeri iucA transposon mutant (data not shown). The abil-
ity to synthesize siderophores is known to be a required activity during tissue colonization in
a number of pathogenic bacteria (CRosa and WALsH 2002). Previous work with a regulatory
gene mutation that led to decreased siderophore synthesis in V. fischeri similarly showed that
persistence of a normal symbiotic colonization required this activity (GRAF and RuBy 2000).
Thus, an increased expression of the V. fischeri iucA homolog during symbiosis would not be
unexpected. Interestingly, while other siderophore synthetases are present, no homolog for
iucA occurs in the genome of the sequenced strain of the closely related pathogenic species
Vibrio cholerae (HEIDELBERG et al. 2000).

V. fischeri is a facultative aerobe that grows well in either the presence or absence of
oxygen; however, its luminescence activity in the symbiosis is“an indication that oxygen
must be present, at least at low levels, in the light-organ crypt environment (BOETTCHER
et al. 1996, RuBy and McFALL-NGAI 1999). The aerobic form of glycerol-3-phosphate
dehydrogenase is encoded by glpD in E. coli (LIN 1987, WALZ et al. 2002) and other
bacteria. This enzyme is induced under conditions of aerobic glycerol utilization, such
as during growth on host membrane phospholipids by pathogenic bacteria (SCHMIEL
and MILLER 1999). In E. coli the synthesis of this enzyme is normally highly repressed;
similarly, the gipD transposon-insertion mutant in V. fischeri produced relatively low lev-
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Fig. 3. Bioluminescence of transposon mutants in culture and in the host. The relative levels of light e
sion of strains growing in culture medium were measured at an optical density of 1.0 (about 107 cells
ml). The light levels of four strains, (A) KV504, (B} KV511, (C) KV493, and (D) KV496, with insertio
glpD, cinA, iucA, or carB, respectively (solid bars), were each matched to one of four other transposon mt=
tants {(open bars) that were found to have similar bioluminescence levels in culture. When the light emis:

of these pairs of strains was compared during colonization, glpD, cinA and iucA, each induced luminescen
about eight- to ten-fold more than their matched strain (e. g., see Fig. 2). Such a relative increase was not
served with insertions in genes like carB, which apparently is not specifically induced during colonizatiof,
Values for the light levels in the host after 22 h are the means of nine animals per treatment, and the stand=
ard errors of the means are indicated with error bars.

els of light in the tryptone-based CM broth (data not shown). However, after the
12 h of light organ colonization the expression of this promoter is apparently indu
(Fig. 2), suggesting the presence in the light organ crypts of both aerobic condition
and this enzyme’s substrate. It may be significant that the epithelial cells lining the 1i
organ crypts slough off periodically, releasing a large quantity of lipid vesicles into th
crypt environment of the bacterial symbionts (NYHOLM and MCFALL-NGAI 1998). Thi
event occurs at daybreak, which first occurs about 12 h after colonization is initiated, &
time that is consistent with when glpD induction first becomes apparent (Fig. 2). j
There are no recognizable homologs of thethird colonization-induced gene, cinA, it
the public database. Nevertheless, it is interesting that the results of a Pfam analysi
(SONNHAMMER et al. 1997) of cinA suggest that it may encode a protein containin,
lipid hydrolase domain. V. fischeri produces in culture an extracellular lipase activi
(REIcHELT and BAUMANN 1973) which is still present in the cinA mutant (data m
shown); however, conclusions based on this result should be mindful that other genes
encoding putative lipase activities can be found in the V. fischeri genome.
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While at least two of the three colonization-induced genes described here encode func-
tions that not only are consistent with what is known about the environment of the light
organ crypts, but also similar to functions reported for other tissue-colonizing bacteria,
the role of these genes in symbiosis is only presumptive. Further studies will be required
in which the promoter region for each gene is placed on the chromosome in single copy
in front of a different reporter fusion (e. g., to a promoterless green-fluorescent protein
gene), in the wild type V. fischeri Tn7 site (Visick and Rusy 1997, McCANN et al.
2001). It would then be possible to determine the nature of, and possible requirement
for, the activity of these promoters in a wild-type (lux™) background, which would allow
amore accurate and long-term evaluation of their dynamics and function in the symbio-
sis (Visick et al. 2000).
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