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The association of Vibrio fischeri and Euprymna scolopes

provides insights into traits essential for symbiosis, and the

signals and pathways of bacteria-induced host development.

Recent studies have identified important bacterial colonization

factors, including those involved in motility, bioluminescence

and biofilm formation. Surprising links between symbiosis and

pathogenesis have been revealed through discoveries that

nitric oxide is a component of the host defense, and that

V. fischeri uses a cytotoxin-like molecule to induce host

development. Technological advances in this system include

the genome sequence of V. fischeri, an expressed sequence

tagged library for E. scolopes and the availability of dual-

fluorescence markers and confocal microscopy to probe

symbiotic structures and the dynamics of colonization.
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Introduction
Molecular approaches that identify and localize

host-associated microorganisms demonstrate the exis-

tence of specific, predictable and, presumably, coevolved

microbiota in many animals and plants [1]. Although they

are a vital part of their host’s life history, surprisingly little

is known about how these microorganisms are selectively

acquired from the environment, and how the resulting

association develops into a stable, long-term symbiosis.

Nevertheless, certain themes are emerging from recent

studies of symbiotic development, most notably, an unex-

pected similarity in the bacterial signals and host

responses that characterize both beneficial and patho-

genic associations [2,3].

Multi-species bacterial consortia, the most common type

of beneficial associations, are being examined using a

variety of sophisticated phylogenetic, metagenomic,

bioinformatics and gnotobiotic approaches [4–7]. In

addition, symbioses consisting of only one or two bacterial

species have proven particularly amenable to functional

analysis using molecular genetics and confocal micro-

scopy [8–11]; an example of the latter class is the associa-

tion between the luminous bacterium Vibrio fischeri and its

squid host, Euprymna scolopes [12]. Investigation of this

natural symbiosis has been recently advanced by both the

sequencing of the bacterium’s genome [13��] and the

development of an expressed sequence tagged (EST)

gene set consisting of 14 000 unique members [14].

E. scolopes maintains a population of V. fischeri cells within

a complex, bilobed organ (Figure 1a–c), and it uses the

bioluminescence of this population at night in an anti-

predatory behavior called ‘counterillumination’ [15]. The

extracellular symbionts are housed deep within this light

organ in epithelium-lined crypts that communicate

directly with the seawater environment through external

pores (Figure 1b). Juvenile squid are free of bacteria when

they hatch, and must obtain an inoculum of the naturally

occurring V. fischeri from the ambient seawater [16]. As a

result of the activity of ciliated epithelial fields (CF) on

the surface of the organ, the bacteria are harvested from

the seawater, aggregating in host-derived mucus that

accumulates around the pores on either side of the

nascent structure (Figure 1c,d) [12]. Within 12 h, the V.
fischeri cells in the aggregate have migrated through the

mucus to the pores, made their way into the three crypts

within each half of the light organ and proliferated to a

population of approximately 106 cells that induce lumi-

nescence and presumably other symbiosis-related traits.

Each day at dawn, the squid expels most of the crypt

contents, including 90–95% of the bacterial population,

out through the pores (Figure 1b); during the next 4–6 h

the remaining symbionts proliferate, restoring the organ

to a fully colonized state. The symbiosis is highly specific:

only V. fischeri is capable of colonization, and their pres-

ence triggers a complex developmental program in the

light organ, resulting in a pattern of stereotypic morpho-

genetic events [12]. Here we review recent studies of this

process from the perspective of both partners, emphasiz-

ing bacterial behavior and gene regulation, and host

biochemical signaling and development.

Regulation of behavior and gene expression
in the bacterial symbiont
Mutational analysis of V. fischeri has established three

stages of symbiotic colonization (Table 1) [16]: initiation

(entering into and early multiplication in the light organ);

accommodation (attaining high cell density); and persist-

ence (continued regrowth to normal levels after each
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venting). Early work established motility as a crucial

behavior for initiation [17,18], very probably due, in part,

to the importance of chemotaxis [19] (C DeLoney et al.,
abstract N-244, 103rd General Meeting of the American

Society for Microbiology, Washington DC, 18–22 May

2003). Recently, specific flagellar mutants have been

constructed [20–22]. As in the case of the pathogen Vibrio
cholerae, V. fischeri appears to control flagellar gene expres-

sion through a cascade of regulators that include s54 and a

s54-dependent master regulator, FlrA. Not surprisingly,

mutations resulting in the loss of either s54 or FlrA

prevent initiation. In addition, a mutation in flrA reduced

the ability of V. fischeri to aggregate outside the light organ.

Surprisingly, complementation of the flrA mutation,

whilst restoring motility and chemotactic ability, failed

to promote a normal level of symbiotic colonization [20].

A clue to the reason behind this result might be that s54

and FlrA also control expression of non-flagellar genes

[20,23�] including, in the case of s54, those involved in

biofilm formation [22,23�]; microarray-based studies of

the FlrA regulon are underway.

In addition to these regulators, the roles of two of six V.
fischeri flagellin genes have been described [21]. Whereas a

mutation in FlaC failed to impact either motility or colo-

nization, a disruption in FlaA caused several defects,
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Figure 1

The V. fischeri–E. scolopes light organ symbiosis. (a) An adult E. scolopes; the approximate position of the light organ, within the mantle cavity, is

indicated by the dashed oval. (b) The large bilobed light organ of the adult squid is revealed by a ventral dissection. The smaller arrows indicate

the position of the pores; the crypt contents are being expelled out of the pore on the left side (larger horizontal arrow). (c) Cut-away illustration

of the juvenile light organ early (left) and late (right) in the initiation of symbiosis. The anterior (aa) and posterior (pa) appendages of the CF, as

well as the antechamber (ac) and deep crypts (dc), and the position of the aggregation of V. fischeri cells, are indicated. Modified from [42].

(d) Confocal microscope image of GFP-labeled V. fischeri cells aggregating in mucus above a pore (white arrow) during the initiation of colonization.

www.sciencedirect.com Current Opinion in Microbiology 2006, 9:632–638



including reduced motility, a slow rate of initiation, failure

to reach the high cell density achieved by the wild type

strain, a substantial delay in colonization of crypt 3, and

poor retention in the light organ following expulsion.

These data support a model in which motility is necessary

not only for entry, but also for reaching ‘optimal’ binding

sites within the light organ. Such a model is particularly

intriguing given that most symbiotic V. fischeri cells become

aflagellate within 24 h of colonization [24], suggesting the

presence of a temporal window during which flagellated

wild type cells reach the putative preferred sites. Inter-

estingly, high Mg2+ concentrations are required by V.
fischeri for full flagellation [25]; such a dependence,

coupled with the relatively low concentration of this ion

in mollusk tissues, might contribute to the symbionts’

aflagellate state in the light organ (see also Update).

Questions such as whether optimal colonization sites exist

can now be addressed by employing two compatible

fluorescent labels. Dunn et al. [26] constructed a set of

Vibrio shuttle vectors based on pES213, one of several

small V. fischeri plasmids that can be mobilized by a

conjugative system encoded on pES100. Using GFP

and RFP markers for complementation, tagging and gene

expression analyses [27�], these workers revealed that

light organs inoculated with two derivatives of the wild

type (each carrying a different marker) contain both

strains. Surprisingly, the two strains frequently occupied

distinct zones within a crypt. Whereas there is as yet no

explanation for this phenomenon, it is reminiscent of the

localization of symbionts in the Xenorhabdus nematophila
symbiosis [28]. In addition, use of these vectors as tran-

scriptional reporters suggested that, even within a single

crypt, distinct microenvironments exist that differentially

influence V. fischeri gene expression [27�].

Luminescence, a behavior required for symbiotic

persistence [29–31], is controlled both by a complex

set of physiological conditions [32], and by genetic reg-

ulators that appear to play additional roles in symbiosis. In

addition to the paradigm quorum sensing regulators, LuxI

(a quorum signal synthase) and LuxR (the lux transcrip-

tional activator), V. fischeri employs additional signal

synthases (AinS and LuxS), two-component regulators

(including the s54-dependent response regulator LuxO),

and an activator of luxR transcription, LitR [29,33–35].

The resulting regulation is sequential: AinS appears to be

the major regulator of bioluminescence at low cell den-

sities, with LuxI as the primary regulator of biolumines-

cence in the high-density, symbiotic condition [29]. Both

the luxI and luxR genes, as well as luxA, which encodes a

subunit of luciferase, are required for normal symbiotic

persistence [30]. It was unexpected that an ainS mutant

exhibited a similar persistence defect as that of a luxI
mutant, despite an almost normal level of symbiotic

bioluminescence. The ainS mutant also failed to properly

initiate colonization, a defect shared by litR and luxO, but

not luxIR mutants. Taken together, these results indicate

that the AinS pathway controls additional symbiosis

determinants that affect both initiation and persistence.

Microarray analysis revealed that several non-lux genes

are controlled by AinS, including those required for

motility. A connection between motility and biolumines-

cence has previously been reported for the symbiosis

response regulator GacA [36]. A gacA mutant is normal

for quorum signaling, but shows nutritional defects [36]

and induces host development poorly [37]. The gacA
mutant did not induce cessation of host mucus shedding,

nor did it trigger apoptosis in the CF. In addition, animals

colonized by a gacA mutant were susceptible to invasion

by secondary V. fischeri colonizers, suggesting that because
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Table 1

Important components of symbiosis developmenta.

Bacterial regulator Colonization stage Symbiosis events affected Refs

SypG Initiation Exopolysaccharide synthesis; (aggregation) [23]

s54 Initiation Motility; (other) [22]

FlrA Initiation and accommodation Motility; (other) [20]

GacA Initiation and accommodation Motility; colonization; growth [36]

AinS Initiation and persistence Motility; luminescence; (other) [29,38]

LuxS (Accommodation) (Colonization) [34]

LuxI Persistence Luminescence [29,38]

Signal/effector

NOS/NOb Initiation Specificity; (signaling) [42]

TCTc Initiation Hemocyte trafficking [3]

Lipid Ac Initiation Apoptosis of CF [3,12]

p53b Initiation and accommodation Apoptosis and regression of CF [51]

Proteasomeb Initiation and accommodation Regression of CF [52]

Actinb Accommodation Duct constriction [43]

Reflectinb Accommodation Luminescence reflection [46]

pES100c (Persistence) Genetic transfer [26]

a Characteristics in parentheses are suggested, but not yet demonstrated.
b Host component.
c Bacterial component.
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the gacA mutant is unable to signal the full program of host

development, the light organ remains permissive to the

recruitment of additional symbionts.

AinS also controls a putative exopolysaccharide synthesis

cluster (VF0151–VF0201), and a set of genes (VFA1014,

VFA1015 and VFA1017) linked to a second putative

exopolysaccharide cluster (VFA1020–VFA1037), desig-

nated syp, that is essential for initiation of symbiosis

[23�,38�]. No connection between AinS and syp has been

established; however, both ainS and litR mutants exhibit

altered colony morphology, a trait often associated with

altered exopolysaccharide production [33,34]. Transcrip-

tion of syp depends upon s54 and a LuxO-like s54-

dependent activator, SypG, encoded within the second

exopolysaccharide cluster; cells that overexpress SypG

exhibit a substantial increase in biofilm formation [23�].
Furthermore, a syp-dependent pellicle forms under con-

ditions in which the symbiosis regulator RscS is over-

expressed (Figure 2) [39] (Yip et al., abstract N-105, 105th

General Meeting of the American Society for Microbiol-

ogy, Atlanta, GA, 5–9 June 2005). Thus, it is probable that

exopolysaccharide production by V. fischeri enhances sym-

biotic initiation, either by promoting adherence or by

providing protection against host defenses — or by doing

both.

Symbiont-induced tissue development and
signal pathways in the host
One of the key advantages of the squid–Vibrio association

is the ability to observe how interaction with a specific

bacterial symbiont triggers a pattern of distinctive

changes in the developmental biology of the host [12].

As a result, there have been significant advances in

understanding the mechanisms underlying both the bio-

chemistry of the bacterium’s signaling and the develop-

mental responses of the host.

New details of the structure and development of the

symbiotic light organ have been revealed in a recent

confocal-microscopy study [40��]. Colonization by V.
fischeri cells was known to involve passage through the

external pores (Figure 1c), which communicate with the

crypts through ducts [12]. Subsequent confocal examina-

tion has revealed that at the medial end of each duct there

is a large antechamber that narrows into a region termed

the ‘bottleneck’, before opening into the deep crypt.

Bacterial symbionts are present only within the deep

crypts (except during initial colonization and, briefly,

during the daily expulsion). This specificity of localiza-

tion might be a result of the inability of the bacteria to

persist in the presence of the biochemical stresses found

in the duct and the antechamber [41,42��]. Interestingly,

the diameter of the bottleneck narrows from between 5–

9 mm to 2–4 mm after symbiosis is established, apparently

imposing an additional physical barrier to supernumerary

colonization [40]. A colonization-induced narrowing was

also noted in the duct itself, where the underlying

mechanism involves both post-transcriptional control of

actin synthesis and a restructuring of the actin in the

polarized epithelium of the duct [43]. To date, such

bacteria-induced remodeling of host actin has only been

described as a response to bacterial toxins (e.g. V. cholerae
repeats in toxin [RTX]) during pathogenic infections

[44]. The presence of genes encoding two RTX homologs

in the V. fischeri genome [13��] presents the possibility that

a similar mechanism might play a role in a normal step in

the development of symbiosis.

In the newly hatched juvenile, the three pairs of crypts on

either side of the organ are at different stages of matura-

tion, and initial colonization of the light organ produces

location-specific responses [40��]. For instance, within the

first 48 h only the most mature pair of crypts exhibits two

previously reported symbiotic characteristics: coloniza-

tion-induced swelling of the deep crypt epithelium

[31], and efficient diurnal expulsion of the symbiont

population [45]. It is probable that as the other less mature

crypts continue to develop, they begin to express these

functions as well. Another sign of maturity in the devel-

oping light organ is the thickening of a reflective tissue

layer dorsal to the symbiont-containing crypts, which

serves to direct the bioluminescence ventrally [12]. This

layer is composed almost entirely of a single unique

protein, termed ‘reflectin’, with remarkable biochemical

properties [46].

The biochemical signaling between V. fischeri and its host

has been further elucidated, revealing surprising parallels

with pathogenesis. Both nitric oxide synthase (NOS) and

NO, which are important components of innate immu-

nity, were detected in the CFs, as well as the epithelia

lining the ducts and antechambers [42��]. Interestingly,

the levels of both NOS and NO were irreversibly down-

regulated after symbiotic colonization, presumably as a
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Figure 2

Pellicle formation by V. fischeri cells that overexpress the regulator,

RscS. Cells carrying an rscS-overexpression plasmid (pRscS) form a

thick pellicle, which is absent in the vector control, with sufficient tensile

strength to retain the medium when the culture tube is inverted.
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result of an as yet undescribed bacterial signal. The

discovery of NOS in 1–5 mm vesicles embedded in the

secreted mucus (a novel location for this enzyme), sug-

gests that its activity might contribute to specificity as

early as the aggregation stage of colonization [47].

Perhaps the most exciting development in signal identi-

fication was the discovery that the peptidoglycan tetra-

peptide monomer — identical to the tracheal cytotoxin

(TCT) of Bordetella pertussis [48] — is a morphogen that

induces normal development of the juvenile squid [3].

Specifically, TCT secreted by V. fischeri during initiation

of the symbiosis results in the trafficking of the host’s

phagocytic hemocytes into the sinus space of the CF and,

in synergy with lipid A, induces the normal apoptosis and

eventual regression of these structures. An analogous

induction by lipid A of the development of zebrafish

digestive function has also been reported [49]. Surpris-

ingly, the target for TCT response in the squid is several

cell layers distant from the colonizing bacteria

(Figure 1c), suggesting that specific receptors and signal

transduction pathways must serve an intermediary role

[50]. These findings make it clear that bacterial products

initially described as toxins can also trigger beneficial

tissue development, and thus their function is highly

context dependent. Similarly, the recent discovery of a

crucial role for the normal mammalian microbiota in

signaling the enteric immune system has suggested a

need to re-evaluate the concept of ‘tolerance’ [2].

The study of pathways activated by these and other

bacterial signals has been made possible by analysis of

an EST-cDNA library of symbiotic squid tissue

[14,50,51]. Specifically, homologs encoding at least 11

components of the NFkB (nuclear factor kB) pathway

have been discovered, including a Toll-like receptor and

four peptidoglycan receptors. The activity of this

pathway, working through a proteasome-dependent

degradation step [52], might link the TCT and lipid A

signals described above to the host’s biochemical (NO,

halide peroxidase and mucus production) and cellular

(macrophage trafficking and apoptosis) responses [12]. In

addition, two homologs of the p53 family of apoptosis-

inducing developmental regulators were found to be acti-

vated in the light organ CF in a symbiosis-dependent

manner [51]. Pathogen-induced apoptosis also can function

through the host’s p53 pathway, suggesting parallels with

V. fischeri-induced apoptosis of the CF [12,51]. Taken
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Figure 3

Early colonization events and signals described in this review. The approximate timeline of events is indicated in red. The relationships linking

the events (italics), signals (boxed) and bacterial gene products (bold) are indicated by arrows, and are associated with either E. scolopes (black)

or V. fischeri (green).
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together, the similarity of signals and host responses in the

squid–Vibrio association to those characteristic of patho-

genic infections is striking, and further demonstrates that

symbiosis and pathogenesis might use a similar language,

but to different ends.

Conclusions
There has been progress toward understanding the

events and signals underlying host–microbe symbioses,

using the E. scolopes–V. fischeri association as a model

(Figure 3). Recent work in several systems has addressed

several central questions. First, how do bacteria sense

their host, and how do their responses adapt them to

this environment? Second, how is subsequent host devel-

opment triggered, and what are the signals and/or path-

ways used? Finally, in what ways do beneficial and

pathogenic associations share common signaling mecha-

nisms? Future studies of microbial symbiosis will begin

to focus on poorly understood emergent properties such

as signal networks, metabolic interactions, and genetic

diversification within symbiont populations. As we begin

to recognize the crucial role beneficial microbes play in

animal health and development, microbiology enters a

new and exciting era of discovery.

Update
The requirement for magnesium in flagellation depends,

at least in part, upon the activity of diguanylate cyclases,

which produce the second messenger c-di-GMP (30-50-
cyclic diguanylic acid) [53�]. Because this molecule has

been shown in other systems to mediate the switch

between motility and biofilm formation, it is a good

candidate for playing a role in the symbiosis.
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