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Rationale

The original call for participation announced
the following outline:

<<The seven known species of the pygmy
squid genus Idiosepius [I. pygmaeus Steenstrup,
1881, I. paradoxus Ortmann, 1888, I. picteti
(Joubin, 1894), I. notoides Berry, 1921, I. biserialis
Voss, 1962, I. macrocheir Voss, 1962, I. thailandicus
Chotiyaputta, Okutani and Chaitiamvong, 1991] are
among the smallest living cephalopods. Recent
studies revealed that at least some of these miniature
squids are extremely short-lived, while they are
“maximalists” in terms of their reproductive output.

The small adult size and the special sedentary
adult mode of life of Idiosepius raise questions
about lifetime mobility: is the post-hatching phase
of planktonic life the only means of dispersal, or
do adult migrations also support dispersal ? How
much of the biogeography is a consequence of

biological and ecological constraints, and how
much is due to evolutionary contingencies ?

The systematics of the genus and species and
the phylogenetic background of this monogeneric
family may be studied under different viewpoints,
using analytical approaches that range from
embryological, morphological and behavioural
studies, to biochemical phenetics and molecular
phylogeny.

Ultimately, laboratory cultures starting out
from planktonic juveniles will be necessary to study
post-hatching behaviour of Idiosepius, and in
particular to find out (1) how the tentacles, which
grow out only after hatching, are functionally
integrated into the arm crown for prey capture,
and (2) how the dorsal attachment behaviour is
established when young animals switch to the adult
life style.
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The aim of this workshop is to study live
Idiosepius, to discuss their biology and the related
ecological and bio-geographic aspects, and to
collect all the available information on these unique
cephalopods. The local coordinators will provide
live animals in aquaria, so that the workshop
participants may get first-hand experience in
observing some of the peculiar behaviour patterns
of these animals. If spawning animals are available,
or eggs can be collected from the field, a hands-
on session for the study of living embryos will be
organized. Some emphasis will be placed on the
procurement and circulation of unpublished reports
on Idiosepius; therefore, anyone having access to
such documents is kindly requested to bring at
least one copy of each relevant item to the
workshop. The results of this workshop are
intended to be published as a group report.>>

Workshop Format and Group Report
During the first day of the workshop, a series

of presentations and open discussions set the stage
for a wider survey during the second day, with a
series of parallel, in-depth reflections by sub-
groups, and a final presentation of the conclusions.

17 February 2003:
Jaruwat Nabhitabhata opened the session

with a welcome address and a first presentation
of some live animals producing egg masses in their
tanks: Idiosepius pygmaeus and I. biserialis.

Sigurd Boletzky recalled the historical
background and rationale of this workshop (as
outlined in the introductory text) and pointed out
that renewed interest in pygmy squid arose when
Voss (1962) described two new species of
Idiosepius (I. biserialis, I. macrocheir) – four
decades after the description of I. notoides by
Berry (1921). Voss’ work brought the number of
recognized species to 6 – three decades before I.
thailandicus was described by Chottiyaputta et al.
(1991). This work, along with studies by Hylleberg
and Nateewathana (1991a, b), confirmed the
presence of a gladius in Idiosepius spp., a fact
that had been previously disputed. Another
important turn was the first detailed description of
Idiosepius embryos, especially the peculiar
morphogenetic retardation of the tentacle

rudiments, by Natsukari (1970) – nearly two
decades before complementary information and a
staging system were published by Yamamoto
(1988). In the same period Adam (1986) drew
attention to some very peculiar aspects of the
radula and beaks that were first described by
Appellöf (1898). The rather slow progress in
morphological and systematic studies with
Idiosepius was finally overtaken by a much more
rapid development in recent years. Biological
studies increasingly drew attention to the
“maximalist” performance of pygmy squid,
especially with regard to fecundity (Lewis and
Choat, 1993).

Jaruwat Nabhitabhata gave an overview of
the biology of I. thailandicus. This is the smallest
species of the genus and is characterized by strong
sexual dimorphism, the female being 3–4 times
larger than the male. Colour patterns also differ
between the two sexes, the females being light
brown, whereas the males are dark brown
(substrate colour matching notwithstanding).
Likewise, orientation in space differs in resting
individuals, with females attaching themselves in
a head up position, whereas males position
themselves head down. During mating, males
approach females, apparently using the tentacles
(not the hectocotylus!) for spermatophore transfer
to the buccal area of the female. Females then spread
out their arm crown for acceptance of
spermatophores. Mating in attached males and
females may be induced by females enticing males
to move down to them on the substrate. Females
explore the substrate for egg attachment with arms
stretched to a sharp point. Eggs are laid on
seaweed using the arms. During pauses in egg
laying, females undergo mating. There is no mate
guarding by males.

Freshly laid eggs are surrounded by many jelly
layers. Subsequent developmental events were
described up to hatching after 2 weeks. As in other
species, no tentacles are developed at hatching.

Main differences between the three species
of Idiosepius found in Thailand (I. thailandicus, I.
pygmaeus, I. biserialis) and reproductive strategies
were discussed.

Finally, culture of pygmy squid was
considered in comparison to cultures of loliginid
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squids and sepiid cuttlefish performed at
temperatures up to 28°C (Nabhitabhata, 1994a,b,
1998). I. pygmaeus was reared from hatching, and
two individuals survived to 30 days. They fed on
wild copepods and mysids (Mesopodopsis
orientalis). Adhering behaviour was not
observed. One of them spent its time lying on the
bottom as well as swimming. Final mantle lengths
were 3.67 and 4.92 mm.

Sean Tracey presented a paper entitled “Life
history traits of the temperate mini-maximalist
Idiosepius notoides” (Tracey et al., 2003). Wild-
caught individuals were aged by interpreting the
increment structure on transverse sections of
statoliths (growth rings counted at 40x
magnification from natal ring to dorsal dome
surface). Histological preparations established
sexual maturation stages. Strong sexual
dimorphism was displayed in the age at onset of
maturation, females mature at 88 days and males
at 69 days, with growth rates being similar in both
sexes. Maximum age of around 107 days was
observed in one female.

Intraspecific variability in growth rates was
detected, it was proposed that this be due to the
influence of SST on metabolic rate. I. notoides
occurs from New South Wales to Tasmania,
surviving temperatures as low as 10°C. In contrast,
I. pygmaeus occurs from N. Australia to NSW and
grows faster at the higher temperatures, which
range from 16 to 30°C. Overlap of geographic
distributions in NSW and differences between life
history strategies under tropical and temperate
conditions were discussed.

Toshie Wakabayashi presented some
distribution data on Idiosepius pygmaeus based on
plankton net catches (night samples) taken from
NW Australia to S Australia. Temperatures ranged
from 26 to 30°C, salinities from 34.2 to 35.2 psu.
Animals were mostly found in coastal waters (0–
100 m) and close to shore. Specimens were
identified by tentacle and arm structures, with
emphasis on early hectocotylization in males. Arm
crown and beaks were studied by SEM (oral view
of arm crown).

Takashi Kasugai summarized his poster
presentation “Life cycle of the Japanese pygmy
cuttlefish Idiosepius paradoxus (Cephalopoda:

Idiosepiidae) in the Zostera bed at the temperate
coast of central Honshu, Japan” (Kasugai and
Segawa, 2003).

I. paradoxus is the northernmost species,
occurring from Japan to S. Korea and E. China.
Sexual dimorphism was pronounced, females being
much larger than males. There was an alternation
of generations with smaller and larger individuals
correlating with warmer and cool seasons,
respectively. Zostera beds were affected by
changes in temperature, and also typhoon
conditions. Temperatures ranged from 30°C
(August 1998) to 6.0°C (February 1999). Mature
specimens appeared throughout cool and warm
seasons (both males and females). Males matured
earlier than females. Sex ratio changed between
seasons. If Idiosepius permanently resides in
Zostera beds, it might be subject to degradation of
the habitat.

Behavior in captivity: Copulation was observed
not only when the female was at rest (i.e. not
spawning) but also in course of laying eggs.
Copulation was initiated by males. Males
approached slowly, then grasped females quickly
and attached spermatophores close to the female’s
buccal mass. Males finding egg laying females
grasped females at the base of their arms and
attached spermatophores between phases of egg
laying. Up to 3 males may remain in stand-by
position awaiting an opportunity to copulate with
one and the same female. Both ventral arms of
males were hectocotylized (left arm IV has 2 small
lobes at the tip; it is raised while the right arm IV,
which is devoid of such lobes, is inserted into the
female’s arm crown).

After copulation outside of egg-laying,
spermatangia implanted in the arm crown were
picked up by females (using her buccal mass,
which is protruded) and might have been moved
to the seminal receptacle below the mouth. On the
contrary, in copulation with egg-laying females,
spermatangia just implanted by males seemed to
be used to fertilize spawned eggs, whereas
spermatozoa in the seminal receptacle were left
where they were as a reserve for subsequent egg
laying. The observation of buccal mass protrusion
raised the question of which parts were actually
being pushed out, the buccal mass alone, or the
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buccal mass along with surrounding integumental
tissues. Probably the homologue of the
(undifferentiated) buccal crown was also pushed
out, thus forming a proboscis (NB: no differentiated
buccal lappets exist in Idiosepius).

Egg laying females used all arms to attach eggs
to the surface of a substrate. Egg laying lasted up
to 80 seconds for a single egg. Uninterrupted
terminal spawning continued during more than two
weeks. During egg laying the oviducal jelly
surrounded the chorion of each egg and was
immediately covered by nidamental jelly, which
subsequently “fused” with the added nidamental
jelly of the next following eggs.

Rearing of juveniles: juveniles preferred
mysids over Artemia. The empty exoskeleton of
the prey was discarded after removal of the flesh
by the protruded buccal mass. Only 3 individuals
were raised to the age of 19 days, 1 individual
reached the age of 26 days. At hatching, there were
no tentacles. After 2 weeks, individuals began to
adhere to a substrate using the mantle tip
(remainder of Hoyle’s organ ?). After 3 weeks,
the tentacles were visible within the arm crown.
The oldest specimen (26 days) had a mantle length
of 3 mm, the tentacles had a length of about 2/3
arm length. At that stage, the short tentacles were
probably used like arms (fast musculature
developing?).

Mary Lucero gave an informal presentation
of the cephalopod olfactory organ and its
physiology, recalling the definitions of taste
(contact chemoreception in suckers, lips, fins,
around eyes) which involves solitary chemoreceptor
neurons and smell or olfaction (distance
chemoreception in olfactory pit/olfactory organ,
situated ventral and posterior to the eye). Benthic
organisms have better chemosensory systems than
pelagic organisms. Solitary organisms use distance
chemoreception. Therefore, since Idiosepius is
both benthic and solitary, it should have a better
chemosensory system than other types of squid.

Behaviorally relevant odors for cephalopods
were identified from the use of bait with amino
acids (bait accepted) or bait with betaine (bait
rejected)(Lee et al., 1994). Additional behavioral
studies which mapped the chemosensory regions
of the squid showed that the region of highest

chemical sensitivity was the olfactory organ (Gilly
and Lucero, 1992).

The cephalopod olfactory organ is composed
of sensory neurons and ciliated support cells that
generate a whirlpool to pull the water towards the
receptor cells. Neurons within the olfactory organ
send fibers to the olfactory lobe of the brain and
to the optic gland (supposed importance for gonadal
maturation). Its anatomy suggests both olfactory
function and pheromonal function (possibly
triggering egg laying). Cross sections of squid
olfactory organs exhibit an epithelium with pseudo-
stratified layers of support cells and five different
morphological subtypes of olfactory neurons
(Emery, 1975).

Electrophysiological recordings from squid
olfactory neurons showed that odors activate either
excitatory or inhibitory receptor potentials.

It will be interesting to look at different
morphotypes of cephalopod olfactory neurons and
map onto them the functional responses to different
chemicals.

Shuichi Shigeno presented his observations
on nervous system development in Idiosepius in
relation to behavioural changes. An SEM study of
embryonic development illustrated some peculiar
features, such as the presence of so-called
pseudoarms (ostensible duplication of arm
rudiment) in the early stage of brachial
morphogenesis, or tuft type cilia in the mantle
cavity, similar to those described in sepiolids.
Toothed beaks were differentiated in the hatchlings.
Cup-shape of the olfactory organ was unique to
Idiosepius, also its morphogenetic “migration” to
the definitive ventral posterior position in relation
to the eye. Other peculiarities existed in Hoyle’s
organ, in the lateral line homologue and in ciliary
distribution in general.

An atlas of the embryonic brain in Idiosepius
paradoxus is now available (Yamamoto et al.,
2003). A description of the neural network
formation using confocal microscopy was given.
Comprehensive gene cloning from the Idiosepius
brain was performed to recognize brain elaboration
processes. Expression of neuron specific
glycoprotein mRNA is now being studied.

Adult Idiosepius had disruptive chromatophore
patterns (similar to young loliginids). Is this a
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synapomorphy suggesting a monophyletic group
uniting pygmy squids with loliginids, or is the brain
structure/anatomy more closely similar to the
Sepiolidae?

Overall, in the phylogenetic context, where
does Idiosepius have its place?  Does dwarfism play
an important role in the processes of development,
life history strategy, and reproduction? Reduction
of tentacles perhaps is less important than a similarity
to ommastrephid squid brain development.

Mike Steer and Jennifer Mather led an open
discussion of behavior, from aquarium studies to
the questions of natural in situ behaviour of
Idiosepius compared to other cephalopods,
focusing on questions of species’ ecology and
possible implications for biogeography. Emphasis
was placed on the links between ecology,
neurophysiology, and physiology when behavior
was analyzed. The ultimate requirements were that
an individual must eat, avoid predation, and
reproduce. The following questions asked how this
is achieved by the animals.

Foraging: possible options were sit and wait,
or actively hunt. Related questions were: if they
sit and wait, for how long? At what time of the
day do they hunt? What range of species do they
take? What cues are used for prey capture? Do
they return home after hunting?

Predator avoidance: possibilities included
passive camouflage, a sequence of strategy
changes, and deception by inking.

Reproduction: how does an individual of a
sessile species find a mate? Males are supposed to
play the first active part. Chemical cues could be
involved in mate finding.

But females may be selective as well. Who
initiates, who ends mating? How does a female
choose a substrate for egg laying? How many eggs
are laid at one site?

Habitat selection : to what extent is juvenile
settlement selective? If there is selectivity, what
are the basic cues?

Activity cycles: are the settled individuals
permanently adhering to their chosen substrate,
or only during a certain time of day? In other
words, are there well-defined periods of activity
during a 24 hour cycle?

Ecological implications of Idiosepius behavior

led to addressing growth in relation to food
availability (crustaceans being the main prey),
perhaps involving chemo-reception under dim light
conditions. Possible alternative modes of “grazing”
(Moynihan, 1983) may result in various
requirements for different growth stages. Growth
also needs to be viewed with regard to sexual
dimorphism in adult size and related effects on
social interactions before and during reproduction.

The general poor knowledge about
biogeography of pygmy squid is due to the virtual
absence of empirical data on natural dispersal, in
terms of juvenile and adult displacement (including
rafting), but also regarding eggs that might be
attached to drift weed. Aquarium studies can
address these questions, but will provide much less
than field studies.

Jutamas Jivaluk summarized her poster
presentation “Description of hatchling of Thai
pygmy squid, Idiosepius thailandicus Chotiyaputta,
Okutani and Chaitiamvong, 1991” (Jivaluk et al.,
2003). The mantle of hatchlings was firm and
cylindrical, bell-shaped with round blunt end. Fins
were separated, small, sub-terminal, oval in outline.
Dorsal mantle length was 0.85-0.90 mm.

The head was nearly square in outline, with
large eyes situated in the anterior corners. The arms
were short and stout with blunt tips, suckers were
in 2 rows on arms II and III. Arm formula: II, III,
I, IV. There were no tentacles.

Up to 30 chromatophores covered the dorsal
side of the mantle, 15-20 the ventral side. Arms
had 1-2 chromatophores on the aboral side.

All these characters allowed differentiation
between hatchlings of I. thailandicus and those of
I. pygmaeus and I. paradoxus.

18 February 2003
The essential insights gained during the first

day were briefly surveyed. Some open questions
were: How many species are there really in the
genus Idiosepius? (cf. English, 1981). How are
they related to each other? Are I. thailandicus and
I. biseralis sister taxa?  In mature females, what is
the function of the right oviducal gland, how much
does it contribute to the entire jelly mass during
spawning?  Where is the lower limit of temperature
tolerance in different species of Idiosepius ?
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Laure Bonnaud and Michele Nishiguchi
then led an open discussion of the placement of
Idiosepius in the system of coleoid cephalopods.
The following questions were approached: What
are the phylogenetic hypotheses of the group?
What are the important sister groups to the
Idiosepiidae? What are the phylogenetic
relationships between different species? There was
general agreement that formalization of
relationships must be sought by using cladistic
analysis in the sense of phylogenetic systematics.

This led to the following questions: What are
likely plesiomorphic characters (widely common
ancestral characters) and what are likely
apomorphic characters (common derived
characters in species that share a more recent
common ancestor)? How do we as scientists first
obtain a “phylogenetic framework” to then address
more comparative questions regarding ecology/
physiology/biogeography? Can similar patterns
(morphological, physiological, ecological,
behavioral) be mapped onto the phylogenetic
framework to give us clues as to the relationships,
evolution and radiation of this unique group of
cephalopods? What characters are likely
homoplasic (convergent characters) that might
obscure the phylogenetic relationships between
Idiosepius and other Decabrachia? It is advisable
to preface an investigation with a phylogenetic
framework, to generate and orientate questions
regarding the physiological, morphological and
biochemical aspects that may further improve the
entire analysis. An essential question in this type
of analysis is: What is a good character? Can
molecular and morphological characters provide
« mutual elucidation » ?

Molecular data are not as static as
morphological data.  It is harder to resolve these
characters for analyses because the ancestral state
of the nucleotide is unknown. How many
transitions/transversions/gaps occur, what type of
cost can one assign each one?

Phenetic methods cannot be expected to refine
a phylogenetic hypothesis.

In-depth reflections by sub-groups
The following items are fair copies of the

handwritten notes collected at the end of the session.

1. - Behaviour
- Why study behaviour ? Necessary to know if
the species considered is a model species useful
for form-function relationships needed for keeping
in the laboratory.
- Why Idiosepius ? We need to understand the
extreme to better know the usual (extreme in size,
attachment and sedentary lifestyle)

Habitat selection. See adhesion as an energy
conservation strategy needed because of the small
size.
Why ? Refuging, similar to the octopus den, notice
also there is ‘opposite’ countershading, camouflage
patterns.
Adhesion is not selective – any surface will do.

Social organization. What male/female proportion,
probably near 50:50.
Are they clumped ? Solitary ? Distribution may be
dictated by shelter availability – distribution has
not yet been studied.

Reproduction. Note the high fecundity of females,
eggs laid in batches over time – necessity here for
energy maximization to manage to produce all
those eggs.
- Mating strategies – how do sperm get selected:
active selection, selection by the female, sperm
interaction, sperm removal.
- Initiative can be both by male and female – there
are a lot of males mating, and they may select
‘targets’ by size.
- Recognition by female postures, size, would there
be chemical cues ?
- There are color patterns – males can be dark brown,
dark/pale halves, side stripe, also flashing ‘corner’.

Feeding. The animals can forage by ambush, out
and catch, maybe even ‘grazing’, the usual
cephalopod variety.
Back to our energy conservation theme –> any
way that works.
Why can’t cephalopods be smaller than Idiosepius
– and what do you do to be good at being small ?

Predator Avoidance. Note hiding and camouflage,
inking as a ‘last resort’, can be a ‘mimic’ ink blob.
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Notice the habitat is close to but never on the
bottom.

===
Keeping Idiosepius:
They tolerate a wide range of salinity and a
reasonable O2 level, temperature range is wide but
species-specific, I. paradoxus 10°–25°, I.
thailandicus 22°–32°.
Food: they eat crustaceans, a variety is fine, size
isn’t a big problem and I. paradoxus doesn’t eat
fish.
They need an attachment surface but it doesn’t
have to be Zostera.
Light ? Maybe dim – but undersurfaces are dim
anyway.
Very small Idiosepius are a problem for food –
NOT Artemia or crab zoeae, maybe newly hatched
mysids and zooplankton.
If they live in the plankton, we should go collect
food species there.

2. - Morphology and Physiology

Morphology
(A) Hatchling
- (1) Chromatophore patterns ? Only smaller
numbers related to hatchling size ? I. thailandicus
< I. pygmaeus ?
- (2) Smaller suckers ? Hatchling size I. thailandicus
< I. pygmaeus
- (3) The brain is very immature but all lobes are
differentiated (check olfactory lobe ?)

(B) Development
- egg size 1 mm or smaller (laid in layer, unlike e. g.
ommastrephid spawn)
- embryonic period very short
- pseudo-arms, as are typical in sepioids and sepiolids
- beak structure: toothed beaks
- cilia: no smooth type cilia
- heterochronic retardation of tentacles (anlage
appears in the embryo): 26 days after hatching
tentacles become similar in length to arms
- cup-shaped olfactory organ – relation to benthic
life ?
- jelly morphology: nidamental jelly fusing into one
coat
- gland-like organ at the lip (base of arm crown)

- hatchling lives as paralarva (at least up to the age
of 16 days)

Physiology
Very few physiological studies have been

performed in Idiosepius spp.
A mostly anatomical study described the

digestive system of Idiosepius. Unlike most
cephalopods, Idiosepius utilizes external digestion.
Several unique morphological characteristics are
associated with external digestion including an “s-
shaped” esophagus, a ciliated stomach lining
instead of the usual chitinous lining, and absorptive
capabilities in the intestine and caecum. There was
no evidence for energy storage in the form of
glycogen or lipid in digestive gland cells. In general,
the digestive system of Idiosepius shows similarities
to loliginid species, especially paralarval forms, and
differs from Sepia.

3. - Systematics
Observations of selected specimens under a

dissecting microscope showed the following
characteristics:

I.biserialis from Phuket
- rounded body end
- olfactory organ near eye
- pale in fix – no chromatophores
- clear cornea in fix
- back fins attached oblique to body
- rectangular adhesion organ

I.biserialis from South Africa
- pointed body end
- olfactory organ near eye
- pale in fix – many small chromatophores
- opaque cornea in fix
- back fins attached vertical to body
- oval adhesion organ

I. thailandicus
- pointed body end
- olfactory organ farther from eye
- dark in fix – many small chromatophores
- clear cornea in fix
- back fins attached vertical to body
- oval adhesion organ
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I. picteti found around Indonesia.

4. - Phylogeny
It was discussed that both an internal

phylogeny for all 7 species of Idiosepius be pursued
in order to better understand sister taxa
relationships, particularly for those species which
have habitat/niche overlap. In particular, I.
biserialis from both S. Africa and Thailand should
be investigated thoroughly in order to establish if
they are indeed the same species (the same holds
for I. pygmaeus from Australia and Thailand), or
are separate subspecies/populations. Also, the
overlap between I. pygmaeus and I. notoides. This
can be accomplished quite easily with a molecular
phylogenetic analysis combined with morphological
data from each of the species and their respective
populations.

As for the position of Idiosepius within the
Decabrachia, it was determined that more
representative taxa for related “in-groups” and “out-
groups” were needed to ensure the placement of
Idiosepius with the squids. Although some
preliminary evidence suggests that the family
Idiosepiidae is sister to the Loliginidae, more data

are needed to support their placement and to also
answer the question of which families are sister to
this unique group of squids.  According to earlier
data by Bonnaud et al. (1996, 1997, 2002), it
appears that other squid families than Loliginidae,
such as the oegopsid squid families Ommastrephidae
and Enoploteuthidae, are possible candidates for
sister taxa to the Idiosepiidae. There was general
agreement that removal of the Idiosepiidae from
the order Sepiolida was appropriate for placement
of this family.

CONCLUSION

The survey of established knowledge and open
questions relating to Idiosepius as achieved during
the workshop convinced all the participants and
other people interested in the subject (see Pecl,
1994; Roberts, 1997; Semmens, 1993; van Camp,
1997; Pecl and Moltschaniwskyj, 2003) that the
time was ripe for a synthesis. Therefore it was
decided to assemble available data, especially from
unpublished dissertations, in a monograph of the
genus Idiosepius, which should be published
before the CIAC2006 symposium.
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