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statistical Analyses. To assess adequacy of sequencing depth we calculated 
rarefaction curves. Extrapolations indicated that sequencing likely captured 
>99% of estimated microbial diversity, and for this reason, no normalization or
downsampling steps were undertaken on the complete dataset to account for
differential sequencing effort, and observed richness was deemed appropriate.

To rank sample type categories by their contributions to cumulative maxi
mized ecosystem richness, each sample was downsampled to 6,000 sequences 
and ten samples were randomly selected from each sample type. Sample types 
were then ordered by their contribution to cumulative richness. This process was 
repeated over 1,000 bootstraps to achieve a hierarchy and distribution of micro
bial richness. 

Non metric multidimensional scaling ordinations were performed in Vegan 
(47) on Bray-Curtis distances of the reduced dataset using relative abundance
transformed data. PERMANOVA analyses were calculated using type II sum of
squares on the reduced dataset using the R package RVAideMemoire (48). To
evaluate the effects of the environmental gradient, a second PERMANOVA was
used on the same distance matrix in which marine samples were excluded.

To evaluate how compositional overlap of stream and terrestrial communities 
varied across the transect, we computed Bray-Curtis dissimilarity between all 
pairs of stream and terrestrial samples within a site (i.e., each "Beach" stream 
microbiome compared to each "Beach" terrestrial microbiome). These values 
were analyzed using GAM beta regression, parameterized for 1-inflated data, 
using both geographic position and trophic guild as predictors (SI Appendix, 
Methods). 

To evaluate patterns of nestedness, we created a series of matrices in which 
samples were summed by sample types and separated by site location and habi
tat. These contingency tables were used to create bipartite networks in order to 
calculate network indices WNODF (an implementation of nestedness metric 
based on overlap and decreasing fill that is weighted by sequence abundance) 
and H2. The WNODF (49) indicates the average proportion of a lower richness 
subset that is contained in a higher richness subset, weighted by abundance, 
when all pairwise combinations of subsets in a network are considered. The anal
ysis can be partitioned into "columns" (a measure of compositional overlap of 
samples, rows (a measure of overlap of incidence of ASVs), or a combination of 
the two. Because we were most interested in compositional redundancies among 
microbiomes and sample types, we chose to restrict the analysis to columns. Val
ues for WNODF, range from O (no nestedness) to 100 (perfect nestedness). To 
evaluate specialization of the same networks, we calculated the H2' index (50), 
which is a network-wide measure of interaction specialization among hosts and 
symbionts. The index calculates the extent to which species interaction deviates 
from random association with potential network members. The index ranges 
from O (no specialization) to 1 (perfect specialization). WNODF, and H2 values 
were compared among habitats using a one-way ANOVA. 
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To evaluate how EMPO 3 occupancy in Waimea predicts global distributions, 
we calculated the absolute latitudinal ranges of ASVs present in both the Earth 
Microbiome Project and Waimea datasets. These were calculated by subtracting 
the absolute minimum latitude from the absolute maximum latitude as 
recorded in the Oiita metadata. To generate a composite dataset, including sam
ples from both the EMP and this study, raw FASTQ data were processed using 
the Oiita (51) portal following the methods of Thompson (26). The combined 
dataset contained 28,841 samples consisting of 1,911,880 ASVs and a mean 
sequencing depth of 48,603 +/- 50,696 (SD). Of those ASVs, 16% (309,467) 
were present in at least one Waimea sample. A total of 136,432 of the ASVs in 
the composite dataset were present in both the Waimea and at least one EMP 
sample, representing 44% of the Waimea ASVs. Mean differences between 
range size of microbes residing among habitats were evaluated with a one-way 
ANOVA, and pairwise differences were calculated using a Tukey test. 

Data, Materials, and Software Availability. Code for reproducing sequence 
processing, data analysis, and figure generation is provided at Github (https:// 
github.com/soswift/microbial_mapping) (52) and is archived at Figshare (https:// 
doi.org/10.6084/m9.figshare.14497992) along with sample by ASV matrices, 
FASTA sequences, and sampling data (53). Sequence files and sample metadata 
that support the findings of this study are available from SRA BioProject with pro
ject No. PRJNA701450 (54) and from Oiita with study ID 13115. 
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